Synthesis of Nanoparticles of Hybrid Frameworks Using Hydrothermal and Emulsion Methods

Chemical Engineering, SBCC

Mentors: Zeric Hulvey and Josh Furman

Faculty Advisor: Prof. Tony Cheetham

Funded by: Department of Energy and Air Products

Nanoparticles of Hybrid Frameworks

Hybrid Framework Structures

- Metal centers with organic linkers (ligands)
- Low density, high porosity materials

Applications

- Separations
- Catalysis
- Hydrogen storage

Nanoscale

- New properties emerge
- Very few examples of nanoscale hybrid frameworks

Research Objectives

- Synthesize hybrid frameworks using hydrothermal methods
- Use emulsion method to make nanomaterials
- Combine both methods to synthesize nanoparticles of hybrid frameworks

Tools for Analysis

- **SEM** Scanning electron microscopy
- **XRD** X-ray diffraction: powder and single crystal

/index.html#sem

http://www.dur.ac.uk/crystallography.group/images/smart6k.jpg

Hydrothermal Method

Purpose

• Increased pressure and temperature

Variables

- Time
- Temperature
- Concentration
- pH
- Metal salt
- Solvent

autoclave

Hydrothermal Results

•Focused on 1,2,4-triazole

- Synthesized single crystals of Zn(C₂N₃H₂)(CH₃COO)
- ZnO₂N₄ octahedra and ZnO₂N₂ tetrahedra connected by triazolate and acetate ions
- Investigating possible porosity

Precipitation Method

Characteristics

• <u>Untemplated</u> method - uncontrolled particle

size and shape

• Used as a control for comparison to the emulsion sample

Emulsion Method

Precipitation vs. Emulsion SEM Images

Precipitation sample of Co₃O₄

Emulsion sample of Co₃O₄

Combination of the Emulsion and Hydrothermal Methods

Conclusions

Accomplishments

- Synthesized a new hybrid framework
- Emulsion reactions reduced particle size and increased uniformity

Future work

• Continue work on combining the emulsion and the hydrothermal methods

Acknowledgements

Samantha Freeman Liu-Yen Kramer Dr. Nick Arnold Prof. Evelyn Hu The Cheetham Group Dr. Ghizzoni and Young Mr. Wopat Jessica Morrison

Thank you for your time!

