# Relating Conservation Goals to Ecological Outcomes 

Amber Miller, Stephen Gosnell, \& Dr. Steve Gaines<br>Santa Barbara City College, Biology; Graduate Student Mentor; Faculty Advisor: Department of Ecology, Evolution and Marine Biology, Bren School of Environmental Science and Management at UCSB

## Introduction

The Earth's biodiversity is declining. This is due to a variety of factors including habitat destruction, overexploitation of natural resources, and climate change. Conservation biologists use tools to help increase population sizes and to reach conservation goals. However, quantitative recovery goals are often set early in the conservation projects when there is a lack of information for many species, making setting appropriate goals difficult. Here we evaluated the appropriateness of stated goals for conserved species by examining available data on population growth after recovery began. We also used data on population growth to explore how extinction probability should impact goals for conserved populations.


Figure 1: Endangered species including (left to right) the Palos Verdes blue Figure 1: Endangered species incluaing (left to right)
butterfly, small whorled pogonia, and Apache trout are all valuable species in
biodiversity as a whole.

Model for population growth We assumed conserved populations would exhibit logistic growth. Under this deterministic model, an established population grows at a given proportional growth rate, $\mathrm{R}>1$. As the population grows, limitations in natural resources causes the realized growth rate to decrease and eventually stabilize at $\mathrm{R}=1$. When this occurs, the populations reaches a natural carrying capacity. This general model provides ecological milestones and an endpoint for population growth and allowed us to compare stated goals to potential population dynamics.

## Data Collection

Methods: We examined 20 mammal species protected by the Endangered Species Act. We recorded population histories, recovery goals, and conservation tools used.

| horn sheep (Peninsular) | -Gray whale |
| :---: | :---: |
| - Black footed ferret | -Gray wolf (Northern Rockies) |
| -Blue whale (Eastern North Pacific) | -Gray wolf (Western Great Lakes) |
| $\bullet$ Bowhead whale | -Grizzly bear (Yellowstone) |
| -California bighorn sheep | -Red wolf |
| -Columbian white tail deer | -Santa Catalina Island fox |
| -Florida manatee | -San Miguel Island fox |
| -Florida panther | - Southern sea otter |
| -Guadalupe fur seal | -Stellar sea lion (Western) |
| -Gray bat | -Utah prairie dog |



Figure 2: Clockwise from top left; grizzly bear, Florida manatee, Florida panther, gray bat, blue whale, Utah prairie dog.

## Growth Models

Goal: To examine current growth rates and look for signs of densitydependence. If significant signs of density dependence are found, estimate the populations carrying capacity and compare that with the conservation goal.
Methods: Use data to araph and analyze population arowth Results: 4 populations showed significant signs of density dependence ( $p<0.5$ ). Out of these, we determined 3 of the goals fall within the $95 \%$ confidence interval range of carrying capacity, meaning goals are appropriate given current information.

| Population | Goal | Estimated Carrying capacity | Carrying <br> capacity 95\% <br> Confidence <br> Interval | How goal relates to carrying capacity |
| :---: | :---: | :---: | :---: | :---: |
| Bighorn sheep | 750 | 1012 |  |  |
| Black footed ferret | 1500 | 1496 |  |  |
| Florida panther | 720 | 506 |  |  |
| Gray whale | 19500 | 20200 | 15930-77840 | inside |
| Gray wolf | 60 | 1602 |  |  |
| Grizzly bear | 48 | 38 | 27-120 | inside |
| Guadalupe fur seal | 30000 | 5722 |  |  |
| Red wolf | 550 | 264 |  |  |
| Stellar sea lion | 45000 | 18617 | n/a-23200 | outside |
| Southern sea otter | 3090 | 2452 |  |  |
| Utah prairie dog | 6000 | 4906 | 3844-13486 | inside |
| Table 1: For each species, we estimated carrying capacity by analyzing relationships between population size and growth rate and compared goals to predicted population dynamics. |  |  |  |  |

## Population Viability Analysis

Goal: Determine probability of extinction 50 years after goal is reached, and 50 years from now (if goal is not reached). Methods: Run 1000 hypothetical population growth simulations using mean growth rate and variance recorded for each species.
Results: Most goals are set high enough that populations face little chance of extinction. In many species, population growth is high enough that extinction probabilities are nearly the same for the existing population.


## Discussion

Results show that most goals are set high enough that, if reached, the populations will have very low probabilities of extinction. However, it should be noted that dynamics are based on populations under current conservation practices. Since only 4 populations showed significant signs of density-dependence, the other populations may not have enough data available for conservationists to make appropriate quantitative goals. At this point in time, growth rates are high enough that even if the goal is not reached, species have very low extinction probabilities. Together, this implies that adaptive management may be useful for setting more appropriate goals as more species specific data becomes available.

Acknowledgements: Thank you to my mentor, Stephen Gosnell, for sharing his knowledge, advice, and enthusiasm for ecology with me and for introducing me to research in the Gaines lab. Thank you to the INSET coordinators for an incredibly well-built and supportive undergraduate research experience.
 UCSB ,

Impact of population size on proportional growth rate


Figure 4: As population size increases, proportional growth rate decreases, approaching 1 .


