Crystalline Nanoporous Metal Organic Frameworks

(Material Research Laboratory)

Major: Biochemistry

Antoin Douglawi

Mentor: Prashant Jain

Advisor: Anthony K. Cheetham

Industrial Funding by Uniliver

Coordination Polymers

Extended Crystalline Organic-Inorganic Materials

• 1D, 2D, or 3D

2D Frame

3D Frame

Porous Structures

Size of Pores Can Be Varied

Multiple Pore Sizes

Applications

- Gas storage and separation
 Hydrogen storage
- Optical applications
 Photoluminescence for sensors and displays
- Electronic applications
 Computer memory
- Magnetic Materials
 - Single molecular magnets

Multiferroics

Electric and Magnetic Phases Coexist.

> Magnetoelectric (ME) Effect.

Previous Work

$ABX_3 - [(CH_3)_2NH_2] Zn(HCOO)_3$

Project Goals

- Synthesize New Multiferroic Metal Organic Frameworks (MOFs)
- Observe Effects of Different Central Cations
 on Multiferroic Properties
- Create New Multivalence MOFs

Our Approach

• Trying Different Cations:

- Trimethylamine
- N-ethyl N-methyl amine

Mixed Valence Iron Formates

Hydrothermal Synthesis

Hydrothermal Bomb

Temperatures range from 125 – 200°C

- Metal salt (Zn, Ni, Mn, Fe, Cu, Co)
- Ammonium Cation (Trimethylamine, Dimethylamine, N-ethyl N-methyl amine)
- Ligand (Formic acid, Acetic acid, Carbodiimide acid)
- **Organic Solvent** (Dimethylformamide, Diethyleformamide, water)

Compounds Created

New compound synthesized using:

- Nickel
- Trimethylamine (CH₃)₃N
- Formic Acid (HCOOH)
- Dimethylformamide DMF
- Does not match any compound in the database
- Multiphase compound: Phases vary as temperatures change

X-ray Diffraction Data

Crystals Synthesized

- MOF synthesized using:
 - Iron (III)
 - Copper (II)
 - Dimethylamine (CH₃)₂N
 - Formic Acid (HCOOH)
- Two crystals
- Green crystals
 - CO₂ templated Fe (III) formate
- Black crystals
 - Unknown. Possibility of mixed valance iron compound

T36 Crystals

N-Ethyl N-Methyl Amine Cobalt (Co²⁺)

Trimethylamine (TMA) Iron (Fe²⁺)

Trimethylamine (TMA) Cobalt (Co²⁺)

Acknowledgements

Mentor: Prashant Jain

Faculty Advisor: Prof. Anthony K. Cheetham

Inset Staff: Nicholas Arnold, Liu-Yen Kramer, and Luke Bawazer

Inset Director: Samantha Freeman

Everyone at Inset for their support and efforts

