Lipid Bilayer Based Binding Surfaces for Nucleic Acids

Caitlin Kreutz
Major: Biology
Mentor: Emin Oroudjev Faculty Advisor: Helen Hansma
Funding By: National Institutes of Health
July 28th, 2005
Main Objectives

- Develop a mobile, semi-fluid, Atomic Force Microscopy suitable surface capable of supporting and binding nucleic acids
- Study the interactions between these surfaces and nucleic acids (NA should be able to move on the surface, but not leave it)
- Improve our control over the self-assembly of nano-structures from nucleic acids, and form nano-structures in precisely controlled, ordered environments
Research Goals

- Discover a lipid, or combination of different lipids that create optimum surfaces for AFM imaging
- Study the stability and quality of lipid bilayer surfaces under different conditions
- Bind DNA and/or RNA to these surfaces and examine their binding properties and appropriateness for nucleic acid nano-structure assembly
The Atomic Force Microscope (AFM)

Detector: sends signal to a computer for analysis and image generation.

Laser light is deflected by the moving tip.

Horizontal tracking of the tip.

Sample.
Preparing Liposomes

- Lipids
 - Type
- Dilute
 - Concentration 10-20 mg/mL
- Dry
 - N₂ Stream
 - Vacuum Pump
 - Lipid “Cake”
- Hydrate
 - HEPES KOH Buffer pH 7.4 or Ultra Pure H₂O
 - Freeze/Thaw Cycles
 - Multi-Lamellar Vesicles
- Extrusion
 - Membrane and Supporting Filters
 - Small Uni-Lamellar Vesicles (100-150 nm in diameter)
Creating the Bilayer

Uni-Lamellar Vesicles Composed of a Cationic Lipid (Positively Charged Head Group)

Trimethylammonium-Propane Cationic Lipid (TAP) Varied Chain Length

Accumulation and Fusion of Vesicles to Negatively Charged Mica Surface

Partial Fusion of Vesicles to Mica Creates Patches of Bilayer

Complete Fusion of Vesicles to Mica Creates Uniform Bilayer

Adopted from Dr. Ilya Reviakine's website: https://ire/image/Vesicle.gif
Images of Bilayers

Partial Fusion - Patches of Bilayer

Complete Fusion - Uniform Bilayer
Binding Nucleic Acid

- Double Stranded DNA
 - Nucleic Acid (Negative Charge)
 - Lipid Bilayer (Positive Charge)
 - Mica (Negative Charge)

[Diagram showing binding of nucleic acid to lipid bilayer and mica]

[Chemical structure of a nucleotide showing phosphate group, base, and sugar]

[nash.cbs.umn.edu/bs101/pix/nucleotide.gif]
Summary of Achievements (So Far)

- Tested Trimethylammonium-Propane (TAP) type of lipids
- Learned how to create lipid bilayers from uni-lamellar vesicles forming a relatively defect-free surface
- Introduced DNA to the lipid bilayer surface and confirmed that TAP bilayer surfaces are capable of binding nucleic acids
- In the process of depositing RNA nano-structures to the surface
 - Not binding so far, Why they should? Why they’re not?
Future Plans

- Improve protocol for lipids with TAP head groups to achieve a reproducible, uniformly flat, AFM suitable lipid bilayer surface for imaging
- Begin testing new compounds
 1. Alkyl-amines (Dodecylamine and/or Octadecylamine)
 2. Alkyl-Trimethoxy Silanes
- Test these new surfaces for their ability to bind nucleic acids, and if time permits RNA nano-structures
Acknowledgements

Special Thanks To...

Emin Oroudjev

Matthias Lauer

Arkadiusz Chworos
(He refused to look at the camera)
Amplitude/ Frequency

- The cantilever and tip oscillate vertically near the cantilever’s resonance frequency.
- When the tip nears and/or contacts the surface resonance frequency of the cantilever is reduced or increased causing amplitude to rise or fall.
- Drive frequency is set 5-10% away from the amplitude peak maximum on the slope because it is more sensitive to fluctuations.
Phase Imaging

phase - The fraction of a complete cycle elapsed as measured from a specified reference point and often expressed as an angle.

- Measures the phase (time) lag between the wave detected from tip-surface interaction and wave sent from piezo actuator.
- Phase imaging can detect changes in surface composition with high resolution, and can be better than topographical images because details are not obstructed by roughness.

http://www.asmicro.com/Applications/phase.htm
Mini-Extruder

Multi-Lamellar Vesicles (MLV) → Small Uni-Lamellar Vesicles (SULV)

- **Heating Block** (Allows Temperature Control for Lipids with High Transition Temp.)
- **Syringes** (250 uL)
- **Membrane** (.1nm)