

Microelectromechanical Systems: Optical Switches August 1, 2003

Chris McCoy^{1,2}, Marco Aimi³, Masa Rao³, Noel MacDonald^{3,*}

¹Santa Barbara City College ²INSET ³University California Santa Barbara MEMS Research Lab

Funded By: NSF, Defense Advanced Research Projects Agency (DARPA)

Overview

Mirror Array

- Motivation
- Background
 - Device Explanation
- Testing
- Collected Data
- Current Results
- Conclusions
- Future Work
- Acknowledgements
- Questions

Interconnects

Contacts

2.0 cm

MEMS Device. Masa Rao, Marco Aimi

Motivation

- Research to improve the performance, reliability, and efficiency of Optical MEMS.
- Applications
 - Telecommunications
 Digital Projectors (increase brightness, higher fidelity)
 Military Applications

Background

Project Constraints:

- Angular mirror displacement
- period of oscillation
- voltages
- Optical MEMS vs. current technology
 - Costly (power consumption), reduces quality of signal, longer switching times

UCSB MEMS, Riley et al.

Lucent Technologies

How Device Works

Optical Switching

Image provided by:

Mirror Actuation

www.analog.com

Testing

• Will incorporate the use of: - Optical microscope fitted with laser-vibrometer - Wyko optical profilometer - ANSYS 5.7 Analysis Collecting data: - Voltage vs. displacement - Time response - Resonance frequencies - Damping effects

Current Data

CIN

е

Current Data

Voltage Vs. Displacement

Current Data

Voltage Vs. Displacement

Current Data

- ANSYS 5.7 Analysis
 - Solved for resonance frequencies, 1st 4 modes
 - Mode 1 = 52.9kHz
 - Mode 2 = 72.0kHz
 - Mode 3 = 143.5kHz
 - Mode 4 = 286.8kHz

Mode 1 out of plane torsion

Mode 2 in plane bending Mode 3 in plane rotation

100 Microns

Mode 4 out of plane bending

Current Results

- The device works!
- Acquired max displacement at 75 Volts
- 8 degree angular displacement achieved

Conclusions

- Device has achieved many of the project goals
- Current setbacks
 - Misalignment (Bonding Issues)
 - Removal of gold on back surface of mirrors (prevent sticking, a.k.a. stiction)
 - Damping?
- Solutions
 - Bonding techniques, design new vacuum chuck, better equipment
 - Filling gaps between mirrors

Future Work

- Multi-Dimensional Tilting Mirrors
- Larger Arrays
- Smaller, Faster, Stronger, More Reliable

Acknowledgements Thanks to: Mom and Dad (sorry about the speeding ticket) Family and Friends - esp. Ben, Gretchen, and Derek My Extraordinary Mentors-Masa and Marco Supermentors-Mike and Mel (good Arnold Palmer Mike) The INSET Program-AI Flink, Trevor Hirst, Evelyn Hu, Esp. Nick Arnold and Liu-Yen Kramer for pulling strings to get me in the program! MacDonald MEMS Group Santa Barbara City College University of California Santa Barbara And to everyone else who has helped me along the way

Questions?

• Purpose?

Data?

• Equipment?

• More Images?

Research Photos

Testing Equipment

Background

- Need a MEMS device to deflect light (information via fiber optics)
- Project has specific constraints/ goals:
 - Actuation voltages <100V
 - Period of oscillation: 50 microsecs
 - Mirror deflection angle: 10 degrees
- Project evolution:
 - Comb-drive actuated mirrors
 - Flat capacitive plates
 - Angled capacitive plates

UCSB MEMS, Riley et al.

