Evaluating Context-Aware Saliency Detection Method

Christine Sawyer Santa Barbara City College Computer Science & Mechanical Engineering Mentors: Jiejun Xu & Zefeng Ni Advisor: Prof. B.S. Manjunath

Vision Research Lab

Funding: Office of Naval Research Defense University Research Instrumentation Program

What is Visual Saliency?

What is Visual Saliency?

• Visual Saliency – Subjective perceptual quality which makes certain items stand out more than others.

What is Visual Saliency?

- Visual Saliency Subjective perceptual quality which makes certain items stand out more than others.
- Mimic human perception

Original Image

Human Fixations

Bruce et al.

- High Speed Infrared Camera
- Illuminator

- High Speed Infrared Camera
- Illuminator

- High Speed Infrared Camera
- Illuminator

- Potential applications
 - Image Segmentation
 - Image Retargeting
 - Image Search & Retrieval

- High Speed Infrared Camera
- Illuminator

- Potential applications
 - Image Segmentation
 - Image Retargeting
 - Image Search & Retrieval

Looking at the context of an image

Looking at the context of an image

• Sometimes looking just dominant object is not enough.

Looking at the context of an image

- Sometimes looking just dominant object is not enough.
- Context-Aware Saliency Extract salient object with its surroundings that add meaning to image.

Context-Aware Saliency Detection

• 4 basic principles of human visual attention

Context-Aware Saliency Detection

• 4 basic principles of human visual attention

- Use eye tracker to evaluate algorithm
 - What do people look at to determine the scenario of image?

Context-Aware Saliency Detection

• 4 basic principles of human visual attention

- Use eye tracker to evaluate algorithm
 - What do people look at to determine the scenario of image?
 - Viewing Time
 - Categories

[Goferman et al.]

The effects in lengths of time

2 Seconds

The effects in lengths of time

- In depth analysis
 - Dominant object
 - Surroundings

5 Seconds

How categories affects how you look

- Sports
 - Person(s) participating
 - Sports equipment

How categories affects how you look

- Sports
 - Person(s) participating
 - Sports equipment

Insight from preliminary experiments

- Need to give test participants a specific task
 - People aimlessly search images when given no task.
 - People get distracted based on prior knowledge.

Insight from preliminary experiments

- Need to give test participants a specific task
 - People aimlessly search images when given no task.
 - People get distracted based on prior knowledge.

Insight from preliminary experiments

- Need to give test participants a specific task
 - People aimlessly search images when given no task.
 - People get distracted based on prior knowledge.
- Time constraints
 - 4 seconds

• 60 images from various categories shown for 4 seconds to each of the 17 viewers.

• 60 images from various categories shown for 4 seconds to each of the 17 viewers.

- 60 images from various categories shown for 4 seconds to each of the 17 viewers.
- Task: Look at the parts that best describe the image and give brief description of scene.

- 60 images from various categories shown for 4 seconds to each of the 17 viewers.
- Task: Look at the parts that best describe the image and give brief description of scene.
- Goal: Evaluate Context-Aware Saliency and create a data set that can provide ground truth data.

Categories of Results

Algorithm matches human perception

Algorithm partially matches human perception

• Algorithm does not match human perception

Algorithm matches human perception

- Image has simple background
- Salient portion(s) have distinct differences in color and/or texture

Original Image Conte

Context-Aware Saliency Algorithm

Experiment Results

Matching human perception

Matching human perception

Matching human perception

Algorithm misses part of the salient portion

- Image has simple foreground
 - People look more at high level features like faces
 - The salient portion could be a similar color and/or texture as its surroundings

Context-Aware Saliency Algorithm

Original Image

Experiment Results

Partially matching human perception

Partially matching human perception

Partially matching human perception

Algorithm differs from human perception

- The image is very busy
- The dominant object is not obvious

Original Image

Context-Aware Saliency Algorithm

Experiment Results

Contrasting human perception

Contrasting human perception

Contrasting human perception

Conclusion and Future Plans

- Match to human perception
 - Simple background and distinct foreground
 - Partial match to human perception
 - Plain foreground with more complex background
- Contrast to human perception
 - Busy image
 - Unclear main object

Conclusion and Future Plans

- Match to human perception
 - Simple background and distinct foreground
 - Partial match to human perception
 - Plain foreground with more complex background
- Contrast to human perception
 - Busy image
 - Unclear main object
- Effects of...
 - Blurring and noise in image
 - People's prior knowledge/background

References

- [1] Stas Goferman, Lihi Zelnik-Manor, and Ayellet Tal, "Context-Aware Saliency Detection", IEEE International Conference on Computer Vision and Pattern Recognition, 2010
- [2] Wei Wang1,3,4, Yizhou Wang1,2, Qingming Huang1,4, Wen Gao,
 "Measuring Visual Saliency by Site Entropy Rate", IEEE International Conference on Computer Vision and Pattern Recognition, 2010
- [3] L. Itti, C. Koch, and E. Niebur. A model of saliency based visual attention for rapid scene analysis. IEEE TPAMI, 1998
- [4] N.D. Bruce and J. Tsotsos. Saliency based on information maximization. NIPS, 2006
- [5] J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. NIPS, 2006
- [6] X. Hou and L. Zhang. Dynamic visual attention: searching for coding length increments. NIPS, 2008

Acknowledgements

- INSET
- Prof. Manjunath
- Jiejun Xu & Zefeng Ni
- Vision Research Lab
- Volunteers for my experiment
- Professors, Family, & Friends