
Novel Optimization of Task Scheduling within MapReduce/Hadoop
Daniel Vicory; Allan Hancock College, Computer Science
Mentor: Nan Li; Faculty advisor: Xifeng Yan
University of California, Santa Barbara, Department of Computer Science

MapReduce, an algorithm created by Google, can be used to work with large datasets, such as indexing the web. The simple and distributed approach to problems by
MapReduce has a�orded its widespread use, with the leading implementation being Hadoop. However, non-uniform data and heterogeneous clusters mean that tasks
usually �nish executing out of sync, which, due to the nature of MapReduce, can leave computing power untapped. SkewReduce, a project from researchers at the
University of Washington, unveiled a method to reduce the skew, or di�erence in task completion times, through the use of cost analysis functions and sample data. With
these two pieces, their framework can calculate how long the algorithm will take on any given computer and partition the dataset optimally so that tasks �nish together,
reaching theoretical e�ciency. However, because of the cost functions, it is not an out of the box solution to skew. Therefore, we propose a novel optimization of task
scheduling that doesn’t require these additions. Our algorithm stops tasks that have been executing for too long in comparison to other tasks and redistributes the work
to the cluster. It replaces SkewReduce’s optimizer and cost portions, so we can compare to previous research on the performance of SkewReduce and Hadoop’s task
scheduler. This project is still in progress, and we do not yet have our task scheduler complete to benchmark with. We are con�dent we should be able to make modest
performance gains against Hadoop’s task scheduler and approach the limit of what is possible without any changes to existing algorithms or knowing the cost.

Abstract

Background
Researchers, businesses, and other organizations are
collecting data at an unprecedented rate. The data
collected can no longer be managed by traditional
means, otherwise known as big data (see F-1 for ex-
ample). Data mining, a new interdisciplinary �eld of
computer science involving mathematics, statistics,
and other specialized �elds relevant to the data at
hand, helps make sense of the large amounts of data
by extracting patterns and condensing large datasets.

One such algorithm used in data mining is called Ma-
pReduce. First invented by Google to index the web, it
is now used for many di�erent purposes, such as dis-
tributed sort and machine learning. Hadoop is a piece
of software that implements this algorithm and is used as the basis for our work.

With that, how does the MapReduce algorithm work? MapReduce works with key-value pairs
throughout, generating them at the mapping step and using them for each subsequent step.
F-2 demonstrates the simple word count algorithm.

Input

F-1: Example of big data, a graph with many thousands of nodes

Deer Bear River
Car Car River
Deer Car Bear

Deer Bear River

Car Car River

Deer Car Bear

Deer, 1
Bear, 1
River, 1

Car, 1
Car, 1

River, 1

Deer, 1
Car, 1
Bear, 1

Bear, 1
Bear, 1

Car, 1
Car, 1
Car, 1

Deer, 1
Deer, 1

River, 1
River, 1

Bear, 2

Car, 3

Deer, 2

River, 2

Bear, 2
Car, 3

Deer, 2
River, 2

Splitting Mapping Shu�ing Reducing Final Result

F-2: Word count algorithm example in MapReduce
Courtesy of JTeam/Martijn van Groningen
<http://blog.jteam.nl/2009/08/04/introduction-to-hadoop/>

Existing Approach
The existing task scheduling algorithm for Hadoop is dumb in that it simply pushes out a new
task when an existing one is done. This allows for great skew, or the di�erence in task comple-
tion times, to be introduced. F-3 illustrates the issue of skew, in that node #4 takes longer than
everyone else, holding up the whole algorithm. A better task scheduler would reduce the
amount of time wasted.

Ti
m

e
El

ap
se

d

Time wasted

Time doing task

#1 #2 #3 #4 #5 #6
F-3: Illustration of a MapReduce algorithm experiencing skew – computer #4 takes longer
 than everyone else, holding up the process, while other tasks also complete out of sync

F-4 exempli�es this with �ow cytometry
data. Notice how after the data is parti-
tioned, some partitions can be much
denser than others – which would a�ect
runtime heavily.

Currently, a research project from the
University of Washington known as
SkewReduce solves the issue of skew
with sample data and cost analysis
functions. By knowing how long any one
partition will take to execute on any
given computers, it can partition the data
very optimally with almost no skew.
However, that is not an out of the box
solution and requires sample data and cost functions. We’d like to have better performance
without more work to implement on the user-side.

F-4: Flow cytometry data that has been partitioned, notice some partitions are denser
 than others, which greatly a�ects runtime speed and can introduce skew
Courtesy of YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia

Our Work
SkewReduce includes an API and optimizer which includes the partitioner and cost functions.
The API involves dealing with very speci�c types of data so we will be ignoring that portion of
their work and focusing solely on replacing the optimizer with our own task scheduler that
removes the need for sample data and cost functions.

First we needed a good understanding of MapReduce, Hadoop, and SkewReduce. Additionally
we required that Hadoop and SkewReduce be working well, since we will be using SkewRe-
duce as a base. After that, how would our algorithm work? We wanted to try a simple yet novel
method of optimizing task scheduling. What our task scheduler does is stop tasks on individual
computers that have been taking too long in comparison with all other running tasks. Since we
also know how far along the task is, we can make an informed decision about stopping the
task. Once we know we’d like to stop a task, we re-partition the data for that task so that every
available computerin the cluster can get a small chunk of that task. This redistributes the work
and “fast-tracks” tasks to completion. F-5 is an illustration of this process.

Our goal is to have performance about between Hadoop’s default scheduler and SkewReduce’s
optimizer (see F-6). We will measure this using the same data SkewReduced used, which is cos-
mology simulation and �ow cytometry data.

Ti
m

e
El

ap
se

d

Redistributed task chunks

Killed tasks

Completed task

#1 #2 #3 #4 #5 #6
F-5: Illustration of our task scheduling algorithm, computer #6 took too long
 so it was killed and had its work redistributed back to the cluster

Future and Acknowledgements
We’d like to �nish our work on the optimized task scheduler so we can compare performance with Hadoop’s default scheduler and
SkewReduce’s optimizer. We also have some other ideas about how to further optimize the task scheduler.

I’d like to thank my mentor Nan Li, Prof. Xifeng Ya, and Shengqi Yan from UCSB. I’d also like to thank the researchers YongChul Kwon and
Magdalena Balazinska from the University of Washington with their help with SkewReduce. And, of course, friends and family who
helped support me and everyone at INSET that made this posible.

Our work is funded by the Network Science Collaborative Technology Alliance (NS-CTA) in conjunction with the US Army Research Labo-
ratory and INARC.

Besides heterogeneous computing environments being the cause of skew, the data itself
can also be at fault. Rarely is data uniform, so there can be much skew if certain parti-
tions of data take much longer to complete processing than others.

0

22.5

45.0

67.5

90.0

Hadoop's
default scheduler

Our Task
Scheduler Goal

SkewReduce's
Optimizer

14.1

87.2

1.6

14.1

Astro (hours)
Seaflow (minutes)

Dataset (time scale)

F-6: Where we’d like to see performance in overall runtime of our task scheduler
 in comparison to previous research by SkewReduce authors

