Wavelength Converters

- Presented by Eduardo
 Gonzalez, Electrical
 Engineering, Sr.
- Mentor: Joe Summers
- Faculty Adviser: Daniel J. Blumenthal, Ph.D
- Funding: D.A.R.P.A.

The Big Picture

- A Wavelength Converter is a device that converts data from one incoming wavelength to another outgoing wavelength.
- They are used in Fiber Optic Communication Systems.

 WDM (Wavelength Division Multiplexing) Networks: Transmit data simultaneously at multiple carrier wavelengths (or equivalently frequency).

Research Goals and Objectives

- Monolithically integrate widely tunable laser and a wavelength converter.
- Demonstrate that any input wavelength can be converted to any output wavelength.
- Design Multimode Interference (MMI)
 Devices (Optical Splitter).
- Test devices for optimization.

BeamProp Simulation and Data

- This software monitors light through a chosen pathway.
- Vary width and length to minimize device area.
- Look for 50% output on each arm.
- Waveguide end tapered to eliminate coupling.

Interferometer - cross phase modulation

phase balance

⇒ data conversion

Laser Tuning and Reflection Spectrum

- Changing the current in each mirror changes it's index.
- We make use of the reflection spectra to observe the periodic mirror maxima.
- Inducing small index changes in one mirror relative to the other causes adjacent reflectivity maxima to come into alignment.
- Lasing occurs at the pair of maxima that are aligned.

Laser Tuning

I:Front Mirror	I:Back Mirror	Wave- length
(mA)	(mA)	(nm)
24	20	1528
21	20.2	1533
4	0	1542
24	3.7	1552
0	0	1559
3	20	1566

Future Plans

- Test devices to observe successful wavelength conversion.
- Observe errors in data transmission using the BER detector.
- Test the devices at 40 Gbps (Gigabits per second)

Acknoledgements

- Joe Summers, Daniel J. Blumenthal, Ph.D, and Milan Masanovic, Ph.D.
- INSET Group: Trevor Hirst, Nick Arnold, Nick Northern, Liu-Yen Kramer, and Evelyn Hu.