Design of Cancer-Targeting Therapeutic Micelles

Eneida Chesnut Chemical Engineering Major Santa Barbara City College INSET/CNSI Program

Mentor: Brian Lin Matt Tirrell's Research Group

An Alternative Delivery System For Cancer Therapy

- > Chemotherapy is highly toxic
- Currently research is developing more effective ways to deliver therapeutics

> Our Approach

- Molecules that are able to target tumor cells
- Synthesis of peptide-amphiphiles that self-assemble into micelles

Micelles could be multifunctional: tumor cell targeting and therapeutic

Courtesy of Amanda Trent

Surfactant Number Theory

Theoretical approximation to predict micro and nano structures

Our goal is to conjugate peptides to tails in a way that allows the resulting molecules to self-assemble into spherical micelles. Cancer-targeting peptides (Hydrophilic head) Hydrophobic tail R.S. Tu, M. Tirrell / Advanced Drug Delivery Reviews 56 (2004) 1537-1563

3. Mass Spectrometry

After separating the different molecules in our solution, through the HPLC, we collect the ones we are interested in to analyze their molecular weight.

> In order to do so, we use a mass spectrometer.

Our Next Step: Conjugate Two Peptides to One Tail

Acknowledgements

- Brian Lin, from Matt Tirrell's Research Group
- Dr. Nick Arnold and Dr. Jens Kuhn, from the INSET Program.
- Evelyn Hu and Liu-Yen Kramer, from CNSI
- Dr. Michael Young and Dr. Alexander Horwitz, from Santa Barbara City College

Thank you! Any questions? DMPA (2,2-dimethoxy-2-phenyl acetophenone) is used as an initiator:

Surfactant Number Theory

Theoretical approximation to predict micro and nanostructures:

 $N_{S} = \frac{v}{a_{o}l}$

v: volume of the tail group
a: head group area
l: fully extended
hydrocarbon tail

Critical Packing parameter (v/a _o l _c)	Critical packing shape	Structure Formed
<1/3	Cone	Spherical micelle
1/3 – 1/2	Truncated cone	Cylindrical micelle
1/2 - 1	Truncated cone	Flexible bilayers
~1	Cylinder	Planar bilayers
>1	Inverted truncated cone	Inverted micelles

R.S. Tu, M. Tirrell / Advanced Drug Delivery Reviews 56 (2004) 1537–1563