Parallelization of Level Set Functions Using Message Passing Interface

Institute for Collaborative Biotechnologies

Presenter

Eric Lee Contra Costa College Computer Science

Lab Mentor

Mohammad Mirzadeh

Computational Applied Science Laboratory (CASL) Faculty Advisor Frederic Gibou

> Department of Mechanical Engineering, Computer Science and Mathematics

Topics to be covered

- What are we doing in the Computational Applied Science Laboratory (CASL)?
- What is my project for this summer?
- Serial and Parallel programming.
- Message passing interface.
- Development process.
- Data and progress so far.
- Conclusions and future work.

What are we doing in CASL?

Retrieved from http://www.cs.ucsb.edu/~fgibou/Home.html

What will I be doing?

Serial and Parallel programming

Texas Advanced Computing Center

Eric Lee

Retrieved from http://www.tacc.utexas.edu/user-services/user-guides/lonestar-user-guide

What is message passing interface?

- Message passing interface (MPI) is the industry standard for parallelizing code.
- Common MPI commands:
 - MPI_Send
 - MPI_Recv

Development Process

What are Level Sets?

Retrieved from http://en.wikipedia.org/wiki/Level_set_method

Level Set Simulation

Buggy simulation

Level set function with a velocity field

Partitioning of processor work

Conclusions and future work

- Serial code is working properly!
- Parallel code works with one processor (essentially a serial code).
- Still need to get parallel code working with multiple processors.
- Compare parallel code to serial code.

Acknowledgments

Mentor: Mohammad Mirzadeh

Faculty Advisor: Frederic Gibou

Institute of Collaborative Biotechnologies

National Science Foundation

Internships in Nanosystems Science, Engineering, and Technology (INSET)

Eric Lee

MPI Code Development

MPI include file													
Declarations, prototypes, etc.													
Program Begins													
Serial code													
·													
Initialize MPI environment Parallel code begins													
· · · · ·													
· · ·													
Do work & make message passing calls													
· · · · · · · · · · · · · · · · · · ·													
· ·													
Terminate MPI environment Parallel code ends													
. Serial code													
Program Ends													

Example of MatLab Code

proj_	backtrace_find_interpolate_upx interpolate_m* x findQuad.m x periodic.m x backtrace.m x untitled* x fixQuad.m x		ne 🕨	eric	•									- 2
1	3Max Rows	•											Workspace	
2 -	M = 100;											-	Name ∠	Value
4	90Max Cols												M H	100 🔺
5 -	N = 100;												abc MM	'mm'
6	%Start and end points of grid													100
8 -	xmin = 0;												abc PM	'pm'
9 -	×max = 5;		st_p	, d×	×)								abc PP	'pp'
10 -	ymin = 0; ymay = 5												ans	<1×51 do
12	j = 0,												col	100
13	%Init the uniform grid		uah	10									dx	0.0505
14 -	x1 = Inspace (xmin, xmax, M);		-										🖽 dy	0.0505
16	yj - Thispace (yern, yeax, N),		3	3	3	5	6	6	7	9	10		it it	15
17	%Init an MxN matrix with all zeros.		ouah	20									level Set	<100×100
18 -	levelSet = zeros(M, N);												le onega	@(x.v)r-sq
20	philuest = zeros(n, n),		12	14	4	14	16	17	18	19	19		phi_dest	<100×100
21	%Radius		ouah	30									r 🔛	0.5000
22 -	r = 0.5;		oug.										row	100
24	%Circle levelset at the center of the orid	88 - C	23	23	3	24	26	27	28	28	29		and s lef	Ψ.
25 -	phi = @(x,y) r - sqrt(((x - (xmax/2)).^2) + ((y- (ymax/2)).^2));		ouah	40									🔤 s_rig	'r'
26	Wide struct for the side lengths of a destination point												abc s_top	't'
28 -	s_top = 't':		33	33	3	35	36	37	38	38	40		E side	<1×1 strue
29 -	s_lef = 'l';		ouah	50									1 Hw	5
30 -	s_mig = 'r';													- 1 1 M 1
32 -	s_dot = 0; side = struct (s_top, 0, s_lef, 0, s_rig, 0, s_bot, 0);		43	43	3	45	46	46	48	48	50		Command Histor	
33													omega	
34	%Omega stuct for the corner points												omega.mm	
36 -													proj_back	trace_find_
37 -	MP = 'mp';											-×i		
38 -	PP = 'pp';		rpol	<u>ate</u>	(<u>li</u>	<u>ne 4</u>)							-X_dest n	
40	umega - struct (mm, 0, 11, 0, 11, 0),		arg	umen	nts.								× dest	
41	%Init_various variables for computations		e_fi	nd_i	inte	rpola	ate_up	date					proj_back	trace_find_
42 -	VX = 0; VX = 5.		ıtri×	: dim	mens	ions.							—size (x_d	est)
44 -	yy = -5, dx = (xmax - xmin) / (M - 1);					67)							proj_back	trace_find_
45 -	dy = (ymax - ymin) / (N - 1);		(row	, co	ol) :	= 1ev	elSet	(findQ	uad(x_	dest_p	(row).			
46 -	dt = dx;		idQua	id(y_	_des	t_p(c	:ol),d	ý)) í	.*	omega	.mm(col)	+	side.1	
48	%Calculate the level-set at each point of the grid								omega					
49 -	□ for row = 1:M;		cktr	ace	fin	d int	erpol	ate un	date (line 8	4)		omega.mm	
50 -	For col = 1:N; 	side, omega] = interpolate(phi_dest, levelSet, _dest_p, dx, dy, M, N, side, omega, xi, yj);											omega.pm	
52 -	- end												proj_back	trace_find_
53 -	L end	the find interpolate update											proj back	(1.5, 1)
54			e_fi	nd_i	inte	rpola		size M	crace_rmu					
70			e_fi	nd_i	inte	rpola	ate_up	date					M	
71 -	figure;		ion	nd_1 has	inte tim	ed ou	ite_up	date 11 lic	ense k	evs hav	ve been	ret	size leve	1Set
72 -	contour(levelSet, [0 0]);	sion has timed out. All license keys								eys hav	ve been	ret	findQuad(×_dest_p, d
74	%Backtracing: calculate a matrix of x_destinations and y_destinations from a given set of points @ pos(x,v)!		ion	has	tim	ed ou	it. A	11 lic	ense k	eys hav	ve been	ret	interpola	te
75 -	x_dest = backtrace(xi, vx, dt);	•		_		1000							proj_back	trace_rind_
	script Ln 18 Col 2	24												

Example of C++ Code

```
#include "parallel_semi_lagrangian.h"
65 ▼ int main (int argc, char* argv[]){
                                                                                                     #include "bilinear interpolating function p.h"
                                                                                                     #include <src/refine coarsen.h>
       mpi_context_t mpi_context, *mpi = &mpi_context;
       mpi->mpicomm = MPI COMM WORLD;
                                                                                                     namespace parallel{
       p4est t
                          *p4est:
       p4est nodes t
                          *nodes:
                                                                                                     SemiLagrangian::SemiLagrangian(p4est t **p4est, p4est nodes t **nodes)
                                                                                                      : p p4est (p4est), p4est (*p4est),
       circle circ(0.5, 0.5, .3);
                                                                                                        p nodes (nodes), nodes (*nodes)
       cf grid data t data = {&circ, 7, 0, 1.0};
                                                                                                     {
                                                                                                       // compute domain sizes
       Session::init(argc, argv, mpi->mpicomm);
                                                                                                       double *v2c = p4est ->connectivity ->vertices;
                                                                                                       p4est topidx t *t2v = p4est ->connectivity->tree to vertex;
       parStopWatch w1, w2;
                                                                                                       p4est topidx t first tree = 0, last tree = p4est ->last local tree;
       w1.start("total time");
                                                                                                       xmin = v2c[3*t2v[P4EST_CHILDREN*first_tree + 0] + 0];
       MPI Comm size (mpi->mpicomm, &mpi->mpisize);
                                                                                                       ymin = v2c[3*t2v[P4EST_CHILDREN*first_tree + 0] + 1];
       MPI Comm rank (mpi->mpicomm, &mpi->mpirank);
                                                                                                       xmax = v2c[3*t2v[P4EST CHILDREN*last tree + 3] + 0];
                                                                                                       ymax = v2c[3*t2v[P4EST CHILDREN*last tree + 3] + 1];
       // Create the connectivity object
       w2.start("connectivity");
       p4est connectivity t *connectivity;
                                                                                                     double SemiLagrangian::advect(const CF 2 &vx, const CF 2 &vy, std::vector<double>& phi){
       my p4est brick t brick;
                                                                                                       double dt = compute dt(vx, vy);
       connectivity = my_p4est_brick_new(2, 2, &brick);
                                                                                                       p4est topidx t *t2v = p4est ->connectivity->tree to vertex; // tree to vertex list
       w2.stop(); w2.read duration();
                                                                                                       double *t2c = p4est ->connectivity->vertices; // coordinates of the vertices of a tree
       // Now create the forest
                                                                                                       int rank current = 0, rank lookup = 0; //P: Used to check for ranks
       w2.start("p4est generation");
       p4est = p4est new(mpi->mpicomm, connectivity, 0, NULL, NULL);
                                                                                                       //P: Buffers for local and non-local nodes for MPI Send/MPI RECV
       w2.stop(); w2.read duration();
                                                                                                       //std::vector<p4est indep t> local dep points, non local dep points; May not need this.
       // Now refine the tree
                                                                                                       //P: Hold quadrant information for MPI_SEND/MPI_RECV. Changed to a class of vectors instead of a vector of classes
       w2.start("refine");
                                                                                                       quad_information local_dep_points_info, non_local_dep_points_info;
       p4est->user pointer = (void*)(&data);
       p4est refine(p4est, P4EST TRUE, refine levelset, NULL);
                                                                                                       // Hold xy & rank for non-local points
       w2.stop(); w2.read duration();
                                                                                                       non local point buffer nl buffer;
       // Finally re-partition
                                                                                                       // loop over all nodes
       w2.start("partition"):
                                                                                                       std::vector<double> phi npl(phi.size());
       p4est partition(p4est, NULL):
       w2.stop(); w2.read duration();
                                                                                                       //P: Loop through all nodes and separate nodes into local and non-local vectors
                                                                                                       //P: Local vectors will be used normally (serial).
       // generate the node data structure
                                                                                                       //P: Non-local vectors will need to be handled differently
       nodes = my p4est nodes new(p4est);
                                                                                                       for (p4est_locidx_t ni = 0; ni < nodes_->num_owned_indeps; ++ni){ //Loop through all nodes
                                                                                                           p4est_indep_t*indep_node = (p4est_indep_t*)sc_array_index(&nodes_->indep_nodes, ni);
       // Initialize the level-set function
                                                                                                           p4est topidx t tree idx = indep node->p.piggy3.which tree;
       vector<double> phi(nodes->num_owned indeps);
                                                                                                           p4est quadrant t *quad;
       for (p4est_locidx_t i = 0; i<nodes->num_owned_indeps; ++i)
                                                                                                           p4est locidx t quad idx;
         p4est indep t *node = (p4est indep t*)sc array index(&nodes->indep nodes, i);
                                                                                                           p4est_topidx_t tr_mm = t2v[P4EST_CHILDREN*tree_idx + 0]; //mm vertex of tree
         p4est topidx t tree id = node->p.piggy3.which tree;
                                                                                                           double tr_xmin = t2c[3 * tr_mm + 0];
                                                                                                           double tr ymin = t2c[3 * tr mm + 1];
         p4est_topidx_t v_mm = connectivity->tree_to_vertex[P4EST_CHILDREN*tree_id + 0];
                                                                                                           //Find initial xy points
         double tree xmin = connectivity->vertices[3*v mm + 0]:
                                                                                                           double xy[] =
         double tree ymin = connectivity->vertices[3*v mm + 1];
```

What are we doing in CASL?

- We solve partial differential equations (PDEs) and use their solutions to simulate various physical phenomena!
- What are PDEs?
 - Mathematical equations
- What can we describe using PDEs?
 - Weather
 - Electricity and Magnetism
 - Fluid flow
- Why is this important?
 - Saves money!
 - Allows us to run simulations without actually building anything.

Development Process

Prepare Serial Code

C / C++

What is the difference between Serial and Parallel programming?

Parallel programming

Filler

• Filler