Hybrid Organic-Inorganic Framework Compounds

Eric Villalon

Ventura College

Mentor: Zeric Hulvey

Faculty Advisor: Anthony K. Cheetham

Funding source: U.S. Department of Energy

What are framework compounds?

 High porosity materials with low structure density

Metal + organic linker

 Structures often contain 3-D channels or pores

Applications of framework materials

- Catalysis
- Separations
- Hydrogen storage
 - H₂ adsorbs to framework surface
 - Potentially used in fuel cells

www.bmwworld.com/hydrogen/h2r_racer.htm

Research objectives and approach

- Synthesize new framework structures using ionic liquids as solvents
- Perform as many different reactions as possible
- Vary reaction conditions to get crystals for structure solution
- Product characterization to figure out structure

Synthesis equipment

Teflon liner

Bomb

Heating oven

Experimental methods and equipment

Grinding the powder to do X-ray diffraction

Preparing the sample to be analyzed

Using the X-ray diffractometer

Typical synthesis:

1 gram of solvent 1:1 ratio of metal to glutaric acid Heat for two days

Powder product

Variables we've changed:

Temperature Concentration Solvent Ratios

Crystals product

Comparing the reaction results

1-ethyl-3-methyl-imidazolium chloride ([emim][CI])

lg of solvent [emim][Cl]	Diluted mixture at 150°	Concentrated mixture at 150°	Diluted mixture at 190°	Diluted mixture at 150° + DABCO	1g [emim][BF4] Diluted mixture at 150°
Reactants	Previous reactions	Reaction set #1	Reaction set #2	Reaction set #3	Compound 3
Ni[Ac]2+Glutaric acid	No product	Compound 1	No product	No product	
Cu[Ac]2+Glutaric acid	No product	No product	No product	No product	
Co[Ac]2+Glutaric acid	No product	No product	No product	No product	
Zn[Ac]2+Glutaric acid	No product	No product	No product	No product	
Mn[Ac]2+Glutaric acid	No product	No product	No product	No product	
Mg[Ac]2+Glutaric acid	No product	Compound 2	No product	No product	

Several more reactions using different solvents

1-butyl-3-methyl-imidazolium chloride ([bmim][Cl])

lg of solvent [bmim][Cl] +	Concentrated mixture at 150°	Concentrated mixture at 200°
Reactants	Reaction set # 4	Reaction set #5
Ni[Ac]2+Glutaric acid	Compound 4	Compound 1
Cu[Ac]2+Glutaric acid	No product	Cu metal
Co[Ac]2+Glutaric acid	Amorphous	No product
Zn[Ac]2+Glutaric acid	Known zinc glutarate	No product
Mn[Ac]2+Glutaric acid	No product	No product
Mg[Ac]2+Glutaric acid	Compound 2	Compound 2

1-ethyl-3-methyl-imidazolium bromide ([emim][Br])

lg of solvent [emim][Br] +	Diluted mixture at 150°	Concentrated mixture at 150°
Reactants	Reaction set #6	Reaction set #7
Ni[Ac]2+Glutaric acid	No product	Compound 1
Cu[Ac]2+Glutaric acid	No product	Compound 5
Co[Ac]2+Glutaric acid	No product	Amorphous
Zn[Ac]2+Glutaric acid	No product	Known zinc glutarate
Mn[Ac]2+Glutaric acid	No product	Compound 6
Mg[Ac]2+Glutaric acid	No product	Known Mg- glutarate

Powder X-ray diffraction patterns

Powder X-ray diffraction patterns

Future work

 Continue efforts to get crystals of the six new structures made

- Microwave synthesis
- Investigate other ionic liquids and other ligands

Acknowledgements

INSET program

Zeric Hulvey

The Cheetham group

U.S. Department of Energy (DOE)

