Fabrication of Light-Emitting Devices Using Polyelectrolyte Films

Govinda Escobar Mentee

Asanga Ranasinghe Mentor

Prof. Steven Buratto Faculty Advisor

Funding Provided By MC-CAM

Objectives of Research:

➢To fabricate light-emitting devices using different polyelectrolyte films, Cd-Se quantum dots, and cathodes

➤To study electroluminescent (EL) efficiencies

Structure of Device

Au/Ag/Ca/Mg (cathode)

Organic Electroluminescence

Exciton formation at the organic heterojunction

Exciton formation on the quantum dot layer

Deposition of Polyelectrolyte Films

Layer-by-Layer self-assembly

Conversion of pre-PPV to PPV

PPV

Deposition of Cd-Se Quantum Dots

The Langmuir-Blodgett trough

Surface pressure for deposition is 30-35 mN/m²

 Langmuir-Schafer deposition technique used to deposit CdSe quantum dots

Feature Plans for Research:

• To optimize the conditions for the fabrication of light-emitting devices

My Accomplishments and Plans:

- Realized my potential as a researcher
- To return next summer as an intern in the same research group
- To obtain a PhD in physics

Acknowledgements:

- MC-CAM
- INSET
- Prof. Steven Buratto
- Asanga Ranasinghe
- Buratto Research Group
- Dr. James Kosmicki
- My Family