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•Conditional programming

•Parts’ size identification

•Collision detection

•Less redundancy with use of loops

•Data is readily accessible

•Easy to vary number of parts

•Very illustrative parts
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Introduction

Programmable self-assembly is the process by which 
autonomous parts are separately programmed to 
coalesce into a functional system. We study a specific 
programming employed in the self-assembly of DNA 
strands. We are interested in computing the time 
complexity of such process when an unknown number 
of particles are malfunctioning. 
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Future Applications
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• Simulate  robotic and/or biological system with 
Matlab/Simulink

• Simulation is to include:

• Time complexity

• Misbehaving Parts

• Effects on evolution time

• Similarity to Initiator 
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“Piccolo Particle Simulator” starting point of code
First stage of the biomolecular simulator, before any 
collisions have occurred
Second stage, where many parts have changed labels

Third stage, where a lot of collisions have occurred 
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Labeling Process

Code above demonstrates the 
redundancy used by this toolbox. 
The simulation shows the lack of 
collision detection and of an attaching 
mechanism. 
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Figure above shows the time complexity to be approximately 
a linear function of the number of parts, with peaks every 
third interval.
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Analogous Molecular Implementation  

Simulation
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•Make code more user  friendly
•More complex shapes
• Include more detailed  collisions
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Figure on top shows the data gathered by the real experiment. 
An emission is given off every time a junction is made. The 
disparity in their trials comes from the variance of the catalyst. 

Figure on bottom shows the data from our simulation. We 
introduce different densities of misbehaving parts to assimilate 
the catalyst.  


