
Time Complexity of Self-Assembly
Process with Misbehaving parts

Swarm Robotics

DNA Manipulation

Chemical Reaction

•Conditional programming

•Parts’ size identification

•Collision detection

•Less redundancy with use of loops

•Data is readily accessible

•Easy to vary number of parts

•Very illustrative parts

First State Second State

Third State

Introduction

Programmable self-assembly is the process by which
autonomous parts are separately programmed to
coalesce into a functional system. We study a specific
programming employed in the self-assembly of DNA
strands. We are interested in computing the time
complexity of such process when an unknown number
of particles are malfunctioning.

Parts
Collide

Parts
Bind?

Change
Label

Occurrences in Nature

Future Applications

[1]

• Simulate robotic and/or biological system with
Matlab/Simulink

• Simulation is to include:

• Time complexity

• Misbehaving Parts

• Effects on evolution time

• Similarity to Initiator

Fire Ants Self-Assemble into
Raft to Survive Flood

Drift
Apart

[5]

“Piccolo Particle Simulator” starting point of code
First stage of the biomolecular simulator, before any
collisions have occurred
Second stage, where many parts have changed labels

Third stage, where a lot of collisions have occurred

[1] http://ipvs.informatik.unistuttgart.de/BV/sym
brion/tiki browse_image.php?imageId=1

[2] Paolo Di Prodi, Lorenzo Cococcia, Matlab Code
[3] http://www.nature.com/nature/journal/v451/

n7176/extref/nature06451-s1.pdf
[4] http://commons.wikimedia.org/wiki/File:Fire_

ants_cluster_in_water.jpg
[5] http://www.mathworks.com/matlabcentral/fx_

files/29262/2/particlebuffer.jpg
[6] Eric Klavins “Programmable Self Assembly” IEEE Control

Systems Magazine » August 2007

Labeling Process

Code above demonstrates the
redundancy used by this toolbox.
The simulation shows the lack of
collision detection and of an attaching
mechanism.

Ivan Lucatero
Allan Hancock College
ilucater@calpoly.edu

Anahita Mirtabatabaei
University of California, Santa Barbara

mirtabatabaei@engr.ucsb.edu

Approach to Code

Simulink Robotic Trial

Evolution of Simulation

Comparing Results

Matlab Editor Bimolecular System

Research Goals

References

Focused on DNA Self-Assembly

Future plans

Allan
Hancock
College

Figure above shows the time complexity to be approximately
a linear function of the number of parts, with peaks every
third interval.

[1]

[3]

[4]

[6]

[3]

[3]

[2]

[5]

Analogous Molecular Implementation

Simulation

[3]

Metastable
Monomers Three-arm

junction
Catalyst

•Make code more user friendly
•More complex shapes
• Include more detailed collisions

Sebastian Perusset
University of California, Santa Barbara

perusset@umail.ucsb.edu

Figure on top shows the data gathered by the real experiment.
An emission is given off every time a junction is made. The
disparity in their trials comes from the variance of the catalyst.

Figure on bottom shows the data from our simulation. We
introduce different densities of misbehaving parts to assimilate
the catalyst.

