Electrical Characterization of Semiconductor Nanostructures for Spintronics Applications

Intern : Jan Rehorik Major : Computer Engineering Mentor : Jason Stephens

Faculty Advisor : David Awschalom

CALIFORNIA NANOSYSTEMS IN STITUTE

ALLAN HANCOCK

Funded By : Defense Advanced Research Projects Agency (DARPA)

Semiconductors

- SC resistivity between that of conductors and insulators
- Resistivity can be tailored over many orders of magnitude by Doping

intal

pentium⁴

Semiconductors

- SC resistivity between that of conductors and insulators
- Resistivity can be tailored over many orders of magnitude by Doping

- Concerned with the generation, manipulation, and detection of spin polarization
- Technological example: HD read heads- "Spin Valve"
- Semiconductor Spintronics : No real world devices yet

How spin behaves in semiconductor

intal

pentium 4

material is currently being studied

Project Objectives

• Characterize electrical properties of semiconductor structures using the *Hall Effect*

- $n_s =$ Sheet Density I = Current B = Magnetic Field q = Charge V_{H} = Hall Voltage $\mu = 1/(n_s e R_s)$ R_s = Sheet Resistance n_s = Sheet Density e = Electron Charge μ = Mobility
- Upgrade the PPMS (Physical Properties Measurement System) to allow van der Pauw measurements
- Measure samples grown by MBE

Cryostat

Resistivity

Cryostat

Cryostat

Cryostat

Cryostat

Spin lifetime depends strongly on carrier concentration

Sheet Resistivity (Ohms/square)

Sheet resistivity, density, mobility vs. temperature

"multi-2DEG sample"

• Sheet Density

Generally increases with temp.

Mobility

Strong function of impurities and temperature (phonons)

Remaining Tasks

- Sample puck modifications
 Faster/Easier
- AC/Lockin measurement
 Alternating current
 More data
 Signal/Noise
- Measure magnetic samples
 Anomalous Hall Effect

"hysteresis"

