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• Concerned with the generation, manipulation, and detection of spin

polarization

• Technological example: HD read heads- “Spin Valve”

• Semiconductor Spintronics : No real world devices yet

How spin behaves in semiconductor 

material is currently being studied
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Project Objectives

• Characterize electrical properties of 
semiconductor structures using the
Hall Effect

• Upgrade the PPMS (Physical Properties Measurement System)
to allow van der Pauw measurements

• Measure samples grown by MBE

I
Rs = Sheet Resistance

e = Electron Charge
µ = Mobility

ns=IB/(qVH)

ns = Sheet Density
I  = Current

B = Magnetic Field
q = Charge

VH = Hall Voltage
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• Mobility (cm2/V-s)

Spin lifetime depends strongly
on carrier concentration

• Sheet Density (number/cm2)

• Sheet Resistivity (Ohms/square)
I I

3 squares 4 squares

high mobility low mobility
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Hall measurement

ns = (I/q)*(B/VH)
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µ=1/(nseRs)

exp(-π RA/RS) + exp(-π RB/RS) = 1

RA = (R12 + R34)/2 RB = (R13 + R24)/2

Calculate Rs

= (I/q)*(1/slope)
slope



Sheet resistivity, density, mobility vs. temperature

• Mobility
Strong function of impurities
and temperature (phonons)
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• Sheet Density
Generally increases with temp.

“multi-2DEG sample”
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Remaining Tasks

• Sample puck modifications
Faster/Easier

I

V

1/f
• AC/Lockin measurement

Alternating current
More data
Signal/Noise

• Measure magnetic samples
Anomalous Hall Effect

“hysteresis”

VH

Bapp


