Photoelectrochemical H₂ Production

Kimberly Kaufman

Chemical Engineering, AHC Graduate Mentor: Scott Roney, UCSB Advisor: Professor Eric McFarland

H₂ Production

Clean renewable fuel source

High fuel value of 142 kJ/g

Reduces the use of fossil fuels

Combustion produces H₂O ●Little H₂ in nature Indecomposed H₂O or hydrocarbons, fossil fuels Cost more energy to make expensive materials for solar energy Gas-storage

Practical H₂ from Photoelectrodes

✓ must be inexpensive and stable

✓ semiconductors with bandgaps in the energy range of visible light

✓ potential cathode materials is Cu₂O

✓Cu₂O is prone to "photocorrosion"

Cu₂O-based heterojunction photocathode

Our Findings...

 ZnO films can be synthesized on electrodeposited Cu₂O by spray pyrolysis

Oxidation improved the photocurrent of the Cu₂O

ZnO may protect Cu₂O from photocorrosion, depending on thickness

Thicker ZnO layer causes anodic behavior

Thicker Cu₂O layer reduced the amount of photocurrent, electrons have too far to travel

Annealing after spray pyrolysis improved the conductivity of the Cu₂O

Special Thanks To: Scott Roney Kelsey Gorter Nick Tovar Alan Kleiman-Shwarcstein Eric McFarland Nick Arnold Mike Northen **Trevor Hirst** Liu-Yen Kramer Julie Niles & Judy

Future Works:

Use applied potential during photocurrent between -0.3V and -0.425V

Make thinner ZnO layers (e.g. use more dilute spray solution)

Try higher annealing temperature for Cu₂O

Refine higher-pH electrodeposition

Measure thickness of ZnO and Cu₂O layers using profilometer

Characterize ZnO/Cu₂O made by Atomic Layer Deposition (collaboration with Prof. Steve George at University of Colorado)