Terahertz Detection

with 2D Plasmons in a Grating Gated High Electron Mobility Transistor

Kyle Cox Ventura College Physics Major Mentor: Greg Dyer Prof. Jim Allen, Physics Department

Why Terahertz?

Radio waves

10 ⁷

Terahertz (THz) Radiation Electromagnetic Spectrum

- Electromagnetic Wave
- ≈ 100GHz 10THz

Applications

- Imaging like X-rays
 - Medical and Security
 - >10,000x less energy than X-rays
- Communications
 - Fast, short range
 - Outer space

Terahertz Imaging

Infrared

10 ¹³

10 ¹⁴

"THz"

10 ¹²

Frequency (Hz)

10 ¹¹

Micro waves

10

10¹⁰

Visible

10 ¹⁵

Ultraviolet

10¹⁶

X-ravs

Research Objectives

- Ultimate goal
 - Narrow band tunable terahertz detector
- Bias a Transistor using LabVIEW
- Recreate code with new equipment
- Measure detector response
 - Bias a THz detector (without radiation)
 - Bias the detector with THz radiation (~140GHz)

Terahertz Detector

- High Electron Mobility Transistor (HEMT)
 - Type of Field Effect Transistor (FET)
 - Control conductivity with electric field
 - Chemical make up (Epitaxial growth)
 - Quantum Well
 - creates 2 Dimensional Electron Gas (2DEG)
 - resonant excitation : 2D plasmon
 - Low temperature (20K)
 - Our device is in the on state
 - Electrons are majority carrier s

2DEG

Legend Source S

Barrier Gate BG Tuning Gate TG Drain D

Not to scale

D

THz radiation

AlGaAs

AlGaAs

GaAs

TG

TG

TG

BG

 \rightarrow

Terahertz Detector

- 1x1mm Dimensions
- BG controls conductivity
 - Bolometric Response
- TG tunes resonance of 2D plasmon
 - Electron density (n)
 - Wave vector (k)
- Under constant current
 - Plasmon should cause a change in voltage

Experimental Set-up

Gate Bias without Radiation

- Verification of working gate
- ~ 250 tuning gates act like a continuous gate

- Higher V_{BG} limits current
- Higher V_{BG} means more voltage to achieve same current
 - Creates energy barrier that electrons must cross Tuning Gate

Raw Signal Data

Barrier Gate Sweep We convinced we are seeing a Barrier Gate Voltage (mV) -560 25 bolometric response because -540 -520 Signal (mV) of signal after pinch off -500 20 -480 -460 15 440 -100 **Tuning Gate Sweep** 10 Tuning Gate Voltage -605 5 25 -600 -575 -550 20 C -525 Signal (mV) -500 50 100 150 200 0 -475 15 0 Time (µs) 10 5 at V_{BG} -525mV Electronic noise from the 0 pulse generator 150 50 100 200 0 Time (µs)

Initial Response Data

- No Signal until reaching pinch-off
- Ideal barrier gate voltage around -500mV

Summary

- Learned how to code in LabVIEW
- Integrated different instruments into experiment
- Learned to bias a transistor
- Saw terahertz detector working
- Have yet to see plasmon resonance

Acknowledgements

- INSET
- CNSI
- Mentor: Greg Dyer
- Faculty Advisor: Jim Allen
- National Science Foundation (NSF)
- Sandia National Laboratories
- Institute of Terahertz Science and Technology(ITST)

Additional Info

Gunn Oscillator

Layering **10 nm GaAs** 75 nm Al₂₄Ga_{.76}As Si δ-doping 98 nm Al₂₄Ga_{.76}As 30 nm GaAs Q.W. 95 nm Al₂₄Ga_{.76}As Si δ-doping 98 nm Al₂₄Ga_{.76}As GaAs/Al₅₄Ga₄₆As 100 nm GaAs GaAs substrate

Additional Terahertz Imaging

