Developing Peptide Concentration Gradients in a Membrane Environment

Leticia Rubalcava Bioengineering Major Ventura College

Mentor: Dimitris Stroumpoulis Faculty Advisor: Matthew Tirrell

Funding: Institute of Collaborative Biotechnologies, National Science Foundation

Structure

- Introduction- Importance of cell binding to the ECM
- Motivation
- Purpose of Concentration Gradients
- Objectives
- Approach
- Microfluidic Devices and Microscopy Images
- Results
- Future Research

Introduction

•Cells in multicellular organisms are anchored to extracellular matrix

 Intengrins and the RGD binding site

•Design of biomimetic materials depends on understanding cell behavior on functionalized surfaces

"Integrins and Health." Horwitz Alan F. Scientific American May 1997 http://www.med.unc.edu/~meissner/sciamer.pdf

What is a Concentration Gradient?

- Change in concentration of a solute across a distance
- Many different concentrations on a single surface

Why Research Peptide Concentration Gradients?

- Contribute knowledge for the development of surface properties that promote favorable reactions by cells
- Future contribution to bioengineered materials

Picture courtesy by Dimitris Stroumpoulis

Objectives

- **Create surface concentration** gradients using vesicle solutions
- Formation of a lipid bilayer by vesicle fusion (extracellular matrix-like)
- Use of vesicles containing lacksquare**RGD** peptides

Lipid Bilayer- different peptide concentrations

Peptides

Barrier Hydrophobic

Hydrophilic

Picture Courtesy by Dimitris Stroumpoulis

Experimental Methods

 Poly(dimethylsiloxane) (PDMS) mold from wafer
 -Create inlets and outlet
 -Glass slide treated with plasma — hydrophilic

- Flow of vesicle solutions

 Egg (PC) (lipids) & Texas Red (lipids and fluorescent dye)
 - -No peptides

Microfluidic Devices

Microscopy Images

• From glass slide to glass containing grid

Summary and Future Research

Summary

Future Research

•Research cell behavior (e.g. cell migration & cell spreading) on peptide surface bound concentration gradient surfaces

Acknowledgements

I would like to thank...

My Mentor Dimitris Stroumpoulis

Matthew Tirrell- Faculty Advisor

✤INSET Program

Solution Concentrations

	Egg PC	Texas Red	Buffer	Total
Solution 1	1.5 ml	0 ml	1.5 ml	3 ml
Solution 2	1.2 ml	0.3 ml	1.5 ml	3 ml
Solution 3	0.9 ml	0.6 ml	1.5 ml	3 ml
Solution 4	0.6 ml	0.9 ml	1.5 ml	3 ml
Solution 5	0.3 ml	1.2 ml	1.5 ml	3 ml
Solution 6	0 ml	1.5 ml	1.5 ml	3 ml

Vesicle Fusion

cture Courtesy by Dimitris Stroumpou

Lipids Used

Egg phosphatidylcholine (PC)

 http://en.wikipedia.org/wiki/Phosphatidylch oline