DNA Coated Gold Nanoshells for Laser Induced Antisense Drug Release in Cells

Marcus Rosario Mentor Gary Braun Dr. Norbert Reich National Institutes of Health Ventura College Molecular Biology

The Big Picture

Research Goals

Attach antisense DNA to gold nanoshells

Introduce nanoshells to cells for intracellular delivery

Activation via pulsed laser to release DNA in a time and position-specific manner

Real World

➢Would enable time-resolved and spatial gene function studies (antisense, silencing RNA, and micro RNA)

Overview

Research Objectives

- Coat nanoshells with thiol-DNA-dye
- Demonstrate delivery into cells
- Release DNA-dye via pulsed laser without killing the cells

45000

Water-filled

cavity

thiol-Au

bond

OIL

Approach

- Characterization of DNA-nanoshells
- Cell viability on nanoshell films
- Effect of variable conditions on pulsed laser release
 - Iaser power, laser exposure time
- Initial studies using a chemical release (excess thiol)

DNA: HSC₆H₁₂-5'-CGC ATT CAG GAT(F)- 3'

~95% quenched fluorescence

(near the NS surface)

10x to 20x increase in fluorescence

(diffusion away from NS)

Pulsed Laser Releasing DNA

Verifying DNA Release using Fluorescence

Gold nanoshells quench DNA-dye fluorescence

- Laser causes DNA separation from NS and increases the fluorescence of the solution
- Quantitated using a fluorimeter and through fluorescence imaging with a microscope

Pulsed Laser release (10x increase)

Microscope Imaging Release from NS-Films

Note: No immediate cell death at these powers!

DNA Transfection Strategies

- Simple Incubation
- Cationic Polymers
 - Electrostatically-induced endocytosis
- Targeting using Peptides or Antibodies
- Receptor-Mediated Endocytosis
 - Transferrin
- Viral Capsids
 - Adenovirus

 Our approach: Cationic Polymer-Nanoshell Composites in solution and films ("Surfection")
Branched-Polyethylenimine (PEI)
HeLa (cervical cancer cells, cultured on plates)

Fu-Hsiung Chang et al. Surfection: a new platform for transfected cell arrays. Nucleic Acids Research, 2004, Vol. 32, No. 3

Chemical BME-Release: Nanoshell-PEI Solution-based Transfection with HeLa

Fluorescence increases after BME release of DNA-dye

Cell Viability on Surfection Films

Optimal Surfection composition:

0.01% PLL (100kD) for 15 min

1% branched-PEI / 1% Gelatin mixture for 15 min

30 min Nanoshell deposition in PBS

50% coverage with HeLa, 10% FBS

Dead cell 25 μm White light

Trypan Blue fluorescence Filter

BME Release of DNA-Dye inside HeLa Cells

BME Release of DNA-Dye inside HeLa Cells

Top: A wide field view of the BME-released DNA-dye observed in ~ 40% of cells.

Bottom: A control experiment shows no increase in fluorescence when nanoshells are absent

Analysis Summary

- DNA release from NS was observed at moderately low laser powers after 3 min exposure, or by addition of BME
- Cell death was not observed at powers much higher than needed for DNA release (~50 uJ/pulse per cm²)
- Verified that PEI-Gelatin films allow for good cell viability
- Uptake of DNA-nanoshells was demonstrated using chemical release with fluorescence increase

Future Plans

- Show laser release of DNA inside cells
- Improve surfection technique
- Use more stable fluorescent dyes
- Deliver known, chemically-resistant, antisense DNA sequences
- Verify gene knockdown
- Use other cell lines to test generality

Acknowledgements

- Mentor Gary Braun
- Dr. Norbert Reich & His Lab
- Nick Fera for the HeLa cells
- Alexander Mikhailovsky for use of the pulsed laser
- INSET Facilitators & Fellow Interns

References

- Boussif, Lezouhal'c et al. "A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine". *PNAS* 1995. Vol. 92, 7297-7301.
- Fu-Hsiung Chang et al. "Surfection: a new platform for transfected cell arrays". Nucleic Acids Research, 2004, Vol. 32, No. 3.
- Huang, El-Sayed. "Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods". JACS 2006, 128, 2115-2120.
- Mikhailovsky, Zasadzinski. "Inside-Out Disruption of Silica/Gold Core-Shell Nanoparticles by Pulsed Laser Irradiation". *Langmuir* 2005, 21, 7528-7532.

Thank You