Understanding StructureFunction Relationships in Biological Glass Fibers

Michael Porter

Project Mentor:

James Weaver

Faculty Advisor:

Dan Morse

Structural Diversity of Siliceous Sponge Skeletal Elements (Spicules)

Sponge Spicule Nomenclature

Generally classified into two major groups
Megascleres:
Typically greater than 1 mm
Large-scale skeletal support

Microscleres:

Typically less than $500 \mu \mathrm{~m}$
Small-scale skeletal support

Skeletal System of Rhabdocalyptus dawsoni

R. dawsoni Spicule Cross-Sections

Fracture Dynamics in Laminated Spicules

Applied Stress

Stepped-Fracture

No Catastrophic Failure!

Skeletal Lattice of E. aspergillum

——100 $\mu \mathrm{m}$

Etching of E. aspergillum Skeletal Lattice with HF

E. aspergillum Skeletal Lattice Cross-Sections

50 $\mu \mathrm{m}$

Giant Anchor Spicule of Monorhaphis chuni

Skeletal System of Aphrocallistes vastus

Conclusions

Spicules greater that a few millimeters in length exhibit a unique laminated architecture which effectively retards crack propagation through these materials.

Layer number increases with spicule length and typically decreases in thickness outward from the core.

Large spicules confronting uniaxial loading exhibit a unique graded architecture for enhanced fracture resistance.

Future Work

Identify the specific bio-macromolecules that direct the synthesis of these remarkable structures.

Model the mechanics of these spicules.

Apply the lessens learned in these studies toward the synthesis of more fracture-resistant composite materials.

Acknowledgements

James Weaver
Dan Morse
Johannes Kindt
Georg Fantner
Yannicke Dauphin
Jan Löfvander
Bonnie Bosma

