Electrochemical Deposition of Pt Metal Particles Using Nafion[®] Membrane as the Template Michelle M. Torres - INSET intern **Ohlone Community College-Integrative Biology** Asanga D. Ranasinghe - Mentor **Faculty advisors** Eric W. McFarland^{*}, Horia Metiu⁺ and Steven K. Buratto⁺ *Department of Chemical Engineering ⁺Department of Chemistry and Biochemistry University of California, Santa Barbara Funding DoD-MURI

Fuel Cells

www.fujitsu.com/img/ PR/2005/20050706-02.jpg

news.com.com/.../ 2009-1047_3-5647454.html

www.science.nasa.gov/.../ fuelcell/notebook_med.jpg

Proton Exchange Membrane (PEM) Fuel Cell

www.eere.energy.gov/.../ fuelcells/fc types.html

 $2H_2 \longrightarrow 4H^+ + 2e \quad Anode$ $O_2 + 4H^+ + 4e \longrightarrow 2H_2O \quad Cathode$ $2H_2 + O_2 \longrightarrow 2H_2O \quad E^\circ = 1.23 \text{ V}$ Electrolyte; $=>Nafion^{\text{®}}$

Advantages;

- Low weight and volume
- Quick start (less warm-up time)
- High power density

Target: designing high performance, reliable, cheap, and light fuel cells

Nafion[®] - as a PEM

Structure

Hydrophilic domains

Hydrophobic domains

I-several 100 nm

Utilization of the catalyst in a fuel cell

Use expensive noble metals/metal oxides as catalyst (e.g. Pt, Ru, WO₃ etc)
Not all of these metal catalysts particles are effectively being used (you don't achieve 100% utilization of the catalyst)

General cross section of a membrane electrode assembly (MEA) manufactured in industry

• Catalysts particles that only lie on hydrophilic channels participate in the fuel cell reactions (red)

• Particles placed in hydrophobic domains are not used efficiently (yellow)

How can we reduce the catalyst loading without changing catalytic activity?

- Electrochemically deposit catalyst through hydrophilic channels of Nafion[®]

Expect to see.... With a minimal loading, same or higher efficiency than a conventional fuel cell

Experimental Setup

- Pulse deposition of Pt nanoparticles

Initial results

- Deposit Pt through the ion channels of the membrane, then peel off/remove the membrane, imaged in the surface of the substrate (carbon cloth) using the SEM

Deposition time = 10 minutes, concentration of $H_2PtCl_6 = 1mM$

A View through the membrane

Construction of Fuel Cells

CV for oxidation of Methanol in H_2SO_4 shows the progress of pulse deposition of Pt at different deposition times

We are trying to optimize deposition conditions to construct fuel cells to get the best I-V characteristics

Conclusions

• This method can be utilized to deposit metal catalysts in fuel cell fabrication

• Is not limited to Nafion[®] but for any porous membranes that can be used in fuel cells

- Varying deposition parameters (i.e. pulse potentials, width and frequency of the pulses, solution concentration) produces metal clusters with increased surface area
- <u>This method significantly reduces the cost of fuel cells</u>
 mg/cm² industrial Vs. μg/cm² to ng/cm² using this technique (million times less loading)

Work in progress....

• Construction and testing fuel cell devices constructed using this technique

• Testing the fuel cells by changing various parameters such as change in relative humidity, temperature etc

• To calculate the available surface area of Pt nanoparticles using electrochemical techiniques

Acknowledgements

OHLONE COLLEGE

- Asanga Ranasinghe
- Buratto & McFarland group
- Dr. Ju Chou
- Dr. Shrisudersan Jayaraman
- Alan Kleiman Shwarsctein
- James O'dea
- Wei Tang
- INSET Faculty
- Special thanks to my parents for all of their support

Progress of pulse deposition of Pt

Use cyclic voltammetry (CV)

- To investigate the catalytic activity of Pt nanoparticles deposited
- Scan the potential -0.2 V to 1.2 V

H₂O oxidation on the Pt surface

CH₃OH oxidation on the Pt surface

Calculation of the amount of Pt deposited

From Faraday's Laws

$W = (M_w lt)/nF$

M_w- molecular wt./rel. atomic mass (195.09 for Pt) I- current (amperes) t- time (seconds) n- no. of electrons (Pt⁴⁺ + 4e ←→ Pt) F- Faraday's const (96500 C)

Open Circuit Voltage Comparison

Sample	Pt loading	Open Circuit Voltage (V)
Commercial components	0.5mg/cm ²	~0.95
Press MEA then pulse deposit THROUGH Nafion	∼1.8 µg/cm²	0.433
Pulse deposit ONTO electrode then press MEA	\sim 4.0 µg/cm ²	0.017

**25 min deposition time, $PtCl_6^{2-}$ solution: 1mM, pH ~ 2.8

** All MEAs using Nafion 117 as membrane

How to increase the catalytic activity ?

Increase the available surface area of Pt particles (smaller particles)

- Nucleate Pt particles with large negative pulse (-1.0 V) through the Nafion[®] channels on the surface of the electrode
- Induce a competing reaction to hold the further growth of nucleated Pt particles
 - By adding an acid (e.g., H₂SO₄) in the deposition electrolyte, we induce vigorous reduction of protons on the nucleated Pt particles to restrict the growth during subsequent negative pulses

