

Metal Contacts for the Hybrid Silicon Laser

Morgan Swaidan, Ventura College

Major:PhysicsMentor:Siddharth JainFaculty Advisor:Dr. John BowersFunding Agency :Intel Corp

Department of Electrical and Computer Engineering

- Optical communication
- Hybrid Silicon Laser
 - Need for metal-semiconductor contacts
- Measurement technique
 - Two and four point probe method
- Anatomy of a metal contact
- Measurement results

Optical Communication

Fiber optic cables

- For long distance communication
- Niche technology
- Expensive components

What we want

Adapt technology to everyday use
 Eg. Faster internet

Why is it important

- Replace existing copper cable
- Fast & efficient data communication

Make cheaper/better light sources

Trans-Atlantic cable

Fiber optic cable array

- Optical communication
- Hybrid Silicon Laser
 - Need for metal-semiconductor contacts
 - Measurement technique
 - Two and four point probe method
 - Anatomy of a metal contact
 - Measurement results

- Optical communication
- Hybrid Silicon Laser

Need for metal-semiconductor contacts

Measurement technique

Two and four point probe method

- Anatomy of a metal contact
- Measurement results

What Do We Want to Measure?

We want R_c: Contact Resistance

R_s: Inherent resistance of semiconductor

What we actually record: Specific contact resistance (ρ) – takes into account area through which current flows.

Measuring Resistance

• We want to measure R_c () Χ Rc Rc Rs

• Measured Resistance = $2R_c + R_s$

Finding Contact Resistance (R_c)

- R_s depends on spacing (x)
- Vary spacing to construct graph

Two Point Probe Method

Four Point Probe Method

- Optical communication
- Hybrid Silicon Laser

Need for metal-semiconductor contacts

• Measurement technique

Two and four point probe method

- Anatomy of a metal contact
 - Measurement results

Anatomy of a metal contact

Anatomy of a metal contact

On Indium Phosphide (InP):

Anatomy of a metal contact

On Indium Gallium Arsenide (InGaAs):

- Optical communication
- Hybrid Silicon Laser

Need for metal-semiconductor contacts

• Measurement technique

Two and four point probe method

- Anatomy of a metal contact
- Measurement results

Non-annealed samples

Some samples not even linear \rightarrow non-linear = not *Ohmic*

[Ohmic: V = iR]

Non-annealed samples

Ohmic: Linear relationship between voltage and current (Contacts must be Ohmic)

Annealed at 350°C, 30 sec

After annealing, both samples are Ohmic

Which contact has lowest resistance?

Looking ahead...

- Two possible semiconductors: InP and InGaAs
- Find contact that will work equally well on both
 - Simplifies manufacturing

```
InP \rightarrow lots of Germanium
InGaAs\rightarrow less Germanium
```


Amount of Germanium