
A Visual Approach to Symbolic Execution
Nicholas Pfister

Santa Barbara City College ▪ UCSB SecLab

In the modern world we live in, we are surrounded by 
devices that use software in some way, shape, or form. 
Many of these devices such as power plants, airplanes, 
and medical equipment are safety critical and could 
cause significant harm if the software controlling them 
was to fail. Hence, we can use a type of static software 
analysis called symbolic execution in order to 
determine the full scope of operation and detect any 
vulnerabilities of said software. In order to fully 
understand the results of this analysis it would be 
incredibly useful to have a means of visualizing the 
scope of a given program as a control flow graph 
(CFG), or collection of code blocks with control flow 
transitions. Thus we present a versatile web-based 
visual platform for displaying CFGs, as well as some 
other valuable information during symbolic execution,  
that is capable of running on any given web-browser. 
This interface is meant to be user-friendly and 
interactive in order to give the user a very clear image 
of the results of symbolic execution and the scope of a 
particular program. With this powerful tool, computer 
security professionals will be able to better assess the 
vulnerabilities of software and therefore maintain the 
integrity of safety-critical devices.

Sample Output
(dummy text)

Abstract

Mentors
Fish Wang, Christophe Hauser, Yan Shoshitaishvili

Faculty Advisor
Christopher Kruegel ▪ Department of Computer Science

Funding
Defense Advanced Research Projects Agency (DARPA)

Symbolic Execution

2 Types of Software Analysis

x = 1
x = 2
x = 3

Dynamic Analysis runs a program many times, 
sending new inputs every time to try and find 
every possible path in a program

Static Analysis examines the source code of a 
program without executing it

The Problem
In more complex programs 
it may take a very long 
time to test for the entire 
scope of a program

Symbolic Execution is a type of static analysis 
that runs a “virtual” version of the program and 
inputs abstract values. It then uses constraint 
solvers to determine mathematically the value 
that the input must equal to follow a certain path

x = “s”
The Advantage
Symbolic execution is capable 
of finding hard-to-reach paths 
that dynamic analysis might 
not find
  

The Interface

● Launches in Google Chrome, Internet 
Explorer, Mozilla Firefox, and most 
other common browsers

● Links directly to symbolic execution 
system to obtain program analysis 
results

● Boxes hold useful information about the 
function they represent

● Lines represent the possible paths a 
program might take

● Graph generation is completely 
automated to require minimum effort on 
the user’s behalf

Usability

The usability of our software is highly 
dependent on the loading speed of the webpage
and the clear, logical layout of the visualizations

Average loading time (20 trials)
5.15ms*

*average loading time of a simple graph with 8 functions and 3 paths

Layout
● Connections between object are clearly 

defined and easy to understand
● Boxes resize automatically so the user 

can easily discern important function 
information

Coding

Languages Used
● HTML/CSS - used to determine the 

webpage layout, as well as the 
styling of the graph

● JavaScript/jQuery - used to devise 
the logic behind the graphing 
algorithms

● Python - used to communicate with 
and obtain results from the 
symbolic execution system 

Important Libraries
● JSPlumb - JavaScript library used 

to create logical connections and 
add interactivity to the graph

● Tornado Web Server - Python 
library used to launch the website 
directly from Python code

JSPlumb

Current/Future Plans

This software was implemented 
by the SecLab team at DEFCON 
22, a hacking convention in Las 
Vegas, to visualize CFGs

Because this is part of an ongoing 
symbolic execution project, our 
software will continue to be 
improved to handle larger and more 
complex graphs


