
A Visual Approach to
Symbolic Execution
Nick Pfister - Astrophysics

Mentors: Fish Wang, Christophe Hauser, Yan Shoshitaishvili

Faculty Adviser: Christopher Kruegel
Department of Computer Science

Our safety depends on software!

What happens if this software fails?

We may analyze software using Symbolic
Execution to...

 Examine how software works
 Detect vulnerabilities
 Detect malicious software - aka malware

Why Symbolic Execution?
2 Types of Analysis

Dynamic Analysis
Runs program many times
with many different inputs

X = 1
X = 2
X = 3

Static Analysis
Examines the source code of a
program, but doesn’t execute it

Symbolic Execution, a type
of Static Analysis, inputs an
abstract variable and solves
the value for all pathways

Visualizing Symbolic Execution
Each box will contain
useful information Arrows will be used to

illustrate control flow

Graphs will be
interactive

Control Flow Graph
(CFG)

Frontend
“Visual/Abstract end”

ANGR Symbolic
Execution
System

Backend
“Operational End”

 With no connection, these

are not useful

With a little coding, we can
create a connection!

Objectives

Useful visual and backend libraries already exist

JSPlumb GraphDracula

Identify and Evaluate Useful Libraries

Determine what works best for our application

Implement Libraries

ANGR Symbolic
Execution
System

Backend Software

Experimental Data

We can measure the effectiveness of our
visualizations by examining it’s speed and usability

Visual Application
Average Loading time (20 trials): 5.15ms
max: 11.03ms min: 4.09ms

A 5ms loading time is negligible when
compared to the backend processing time

As this interface improves to handle more complex
graphs, loading time will have to be re-assessed

Interface

Our interface will be
user-friendly and easy
to understand

Snapshot of our web-
based user interface

Preliminary Interface
at startup (test without
program data)

Connections
are unclear

Containers are
small/lacking detail

Interface

Interface after first
revision (test without
program data)

Containers can
be reorganized
by user

Connections are
more visible

Containers are still small and
not interactive

Interface

Interface after
most recent
revision

Improved
connections

Resizable
containers

Improved graph
organization

Interface

Future Plans

This interface is part of a much larger project, and
will continue to be improved

The coding behind this
interface is currently being
implemented by researchers in
the SecLab to visualize CFGs
at DEFCON

Additional revisions to the
interface are planned to
make generate graphs of
larger, more complex
programs

Achievements

Previous computer skills: Java, C, C++

To create this interface, I
had to learn...

HTML/CSS for
website layout/styling

JavaScript/jQuery for
graph generation

Python for backend
development

Git/GitLab use for sharing
and merging code

Achievements Continued...

“I have not failed. I have just found 10,000
ways that won’t work.” -Thomas Edison

Most importantly,developing this software
has given me first-hand experience with...

Organization/planning
Experimental methods
Trial and error

Acknowledgements

Special thanks to...

 Mentors
Fish Wang, Christophe Hauser, and Yan Shoshitaishvili

Faculty Advisor
Christopher Kruegel

INSET
Maria Napoli, Jens-Uwe Kuhn, Nick Arnold, my fellow
interns, and everyone else involved
In addition,
Todd Brei, Mike Young, Stephen Strenn, and Jerry
Wyss for nurturing my interest in math and science

