╋

Mating System Evolution of *Clarkia:*

physiological traits correlated with plant biomass

Nicolette Geluz, Oxnard College Major: Biology Mentor: Leah Dudley Principal Investigator: Susan Mazer Department of Ecology, Evolution & Marine Biology, Santa Barbara ÷

Floral Mating Systems

- Out-cross pollination (outcrossers)
 - Vector driven
 - Genetic variation
 - More chances to be able to adapt
- Self-fertilization (selfers)
 - Synchronicity
 - Smaller distance between anther & stigma
 - Ensures reproductivity
 - Reduced genetic diversity
 - Inbreeding depression

Hypothesis

Reproductive Assurance Hypothesis

 As pollinator population decreases or is absent, selection for high autogamy occurs

Drought Avoidance Hypothesis

When there is low amounts of water available, selection for traits to avoid drought occurs

Behind the Research

- Evolution of Selfing
 - Driven by climate change
 - Occurrence of drought
 - Outcross phenotype resembling selfers will have higher fitness
- Future Predictions
 - Outcrosser population will evolve into selfer
 - Accumulate deleterious alleles
 - Lower genetic diversityExtinction

Clarkia xantiana ssp parviflora (selfer)

÷

Evolution of Selfing Through Drought Avoidance

- Drought Avoiders: plants that avoid drying-out
- Possible Strategy to avoid drying out:
 - Complete lifecycle when water is plentiful
 - Early flowering
 - Grow faster

+-

- Start reproducing at a smaller size (smaller above-ground biomass)
- Greater carbon gain in shorter amount of time
- Lower water use efficiency
- Prevent water from escaping
 - Smaller leaves, overall above ground biomass, petals
 - Decrease water loss
 - Increase water use efficiency

+

Research Goals

Clarkia xantiana

ssp xantiana (outcrosser)

- Main questions
 - Do outcrossers at dryer climates show drought avoidant phenotypes?
 - Are carbon gain and water loss negatively correlated with above-ground plant biomass?
- Plant physiology project
 - Physiological process
 - Estimate plant biomass

÷

Methodology

- Study site
 - Lake Isabella
 - 42 miles from Bakersfield
 - Seasonal temperatures
 - 3000 ft above sea level

- Study population
 - Sawmill (in sympatry with selfing taxon)
 - plants from Clarkia xantiana

Physiological Traits

Photosynthesis (umol CO ₂ m ⁻² s ⁻¹)	Transpiration (mol H ₂ O m ⁻² s ⁻¹)	Water Use Efficiency (umol CO ₂ /mol H ₂ O)
Carbon gain	Water loss	Photosynthesis /transpiration
Selfing traits: Increased rates, decreased biomass	Selfing traits: Increased rates, decreased biomass	Selfing traits: decrease WUE, decrease plant biomass

Infrared gas analyzer

Methodology

- Leaf areas
 - Outline leaves and scan image to computer
 - Measure leaf area
 - Accounts for surface area available for gas exchange

Plant Biomass

- Separate above/below ground plant structures
- Weigh above stem

Results

Photosynthetic Rates Correlated with Plant Biomass

Log Photosynthetic Rates (umol CO2 m-l s-l)

Results

÷

Transpiration Rates Correlated with Plant Biomass

Results

Water Use Efficiency Correlated with Plant Biomass

Log_e Water Use Efficiency (umol CO2/mol H2O)

÷

Discussion

- Physiology does not correlate with above-ground plant biomass
- Current change in the environment is at a slow rate
- Or does not exist
- Location is cooler

Future Research

- More data from different outcross populations
- Measures different examples plant fitness

÷

Acknowledgements

- Leah Dudley
- Prof. Susan Mazer
- Alisa Hove
- Jens-Uwe Kuhn
- Nicholas Arnold
- Mazer Lab

