Therapeutic Drug Delivery

Rachel Freund Mechanical Engineering Santa Barbara City College (SBCC)

Mentor: Guohui Wu Faculty Advisor: Joseph Zasadzinski National Institute of Health (NIH) Internships in Nanosystems Science, Engineering Technology (INSET) California NanoSystems Institute (CNSI) University of California Santa Barbara (UCSB)

Current anti-cancer drug delivery methods are not satisfactory

- Typically, a few percent of drug dose reaches intended tissues due to premature release from vesicles
 - Higher dose causes side-effects
- Current delivery technology produces a new generation of vesicles known as vesosomes
 - Their current large size makes them vulnerable to the immune system

Objective: synthesize smaller vesosomes, that are biocompatible and stable within the human body

Nano-Encapsulation for Targeted Delivery of Drugs

- Liposome-Based Delivery Vehicle
- Cell-Mimic: Vesosomes
- Unilamellar Vesicles

General Structure of double-tailed phospholipids.

The Vippossome

Improving Nanoparticles for Targeted Drug Delivery

Experimental objectives:

- Decrease typical vesosomes from 0.4 100 μm to < 0.4 μm
- Narrow size distribution of vesosomes

Experimental Design

Modifying three critical process variables:

- Polymer selection
 changes bilayer curvature
 - Poloxamer 188
 - Brij 700
- Concentration optimization
 - Range: 1 12 ^{mg}/_{ml}
- Down scaling synthesis
 - Extrusion
 - Sonication

• • • Procedure

- Sample:
 - Dipalmitoylphosphatidychloline lipid (DPPC)
- Extrusion / Sonication
- Interdigitation
- Freeze Fracture (FF) / Replication
- Transmission Electron Microscopy (TEM)

 Provides energy waves to breakdown vesicles

Before / After

Shift in color from opaque/white to translucent Indicates a decrease in particle size

Materials / Methods Interdigitation

At T < Tm (the main transition temperature) ethanol molecules intercalate between the headgroups.

Upon heating above Tm, the bilayer re-forms and reverts to a fluid L phase.

Materials / Methods *Freeze Fracture (FF)*

FF is used to image vesicles in their native state

FF in a nutshell:

3D soft biosample translated to 2D inorganic replica

Data Analysis (FF results) Interdigitation Fusion Vesicles (IFVs)

Unprocessed Spontaneous vesicles

Guohui Wu

Processing decreases IFV Size from 2µm \rightarrow 500nm -1µm

Sonicated

- [4 ^{mg}/_{ml}]
- 0.5 ml DPPC
- 0.125 ml Brij 700

Extruded

- [2^{mg}/_{ml}]
- 0.5 ml DPPC
- Poloxamer 188

Guohui Wu

Conclusion

- Achieved average size reduction by 50 %.
- Combination of the following variables significantly contributed to size reduction:
 - Poloxamer 188
 - [Concentration]: 1-6 ^{mg}/_{ml}
 - Extruder ≈ Sonicator

Implications

- Experiment with other polymers
 Fluctuate polymer concentrations
 Analyze their natural size contour
 Determine size/number distribution
- Consider file patent claims

Acknowledgements

Funding:

Thanks:

Guohui Wu, Joe Z, James Byrne Cecile Boyer (Ref) Group members both past and present Samantha Freeman, faculty, students, and friends My parents YOU the audience

QUESTIONS!

Materials / Methods Freeze Fracture / Replication Freeze Fracture: 0.5µL sample Vitrification & transfer

Figure 11: Schematic representation of the Freeze Fracture Replication process: from sample preparation for cryo-fixation, to the mounting of the replica on a TEM grid.

Cecile Boyer

Structures formed

Spherical micelles

Vesicles

Planar bilayers

Why am I Doing this Research?

Advance drug delivery efficiency for treatment in diseased tissues

- Lower dose reduces side effects
- Patient safety
- Lower costs of goods