Characterizing Soil Based on Chemical and Physical Properties

> Intern: Ranulfo Morales Major: Mechanical Engineer-UCSB Mentor: Kristin Clark Faculty Advisor: Dr. Arturo Keller

Project Funded By: L.A Regional Water Quality Board and Friends of the Santa Clara River

Background

 Water quality improvement in the Santa Clara River.

- Decrease pesticides and nutrients daily loads from agriculture runoff into the Santa Clara River.
- Use bioswales and bioactive trenches to decontaminate water as a low cost alternative.

Biotrenches and Bioswales

My Contribution

Understand a way to study the transport of nutrients and pesticides in the swales and trenches.

Transport processes:

- Adsorption
- Advection-dispersion

Characterize the physical properties of soils:

- Bulk density
- Moisture content
- Specific gravity
- Particle size

Preliminary Analysis

- Collect soil samples
- Process using ASTM methods

Methods

Measure Specific Gravity, Soil Moisture, Hygroscopic Moisture, Bulk density, % soil suspension

Analysis

Calculate particle size and texture

Process

- 1. Take soil samples from Bioswales
- 2. Label and separate samples in plate for air drying.

- 3. Sieve in 2mm pan
- 4. Put other half of samples in Al. pan to oven dry

Methods

Measure Bulk Density

Measure moisture content using the oven dried method

Measure specific gravity of the soil relative to water

Methods and Apparatus

Hydrometer

Soil Samples

Datà Book

Bulk Density (g/mL)

Specific Gravity

Results

Output 3 Sample (g)

% Suspensio	on time
27.82	2 min
17.51	
15.45	
13.39	
9.27	
7.21	4 hrs
3.09	

What We Learned * How to use the <u>Hydrometer</u>

* Classify soil texture using USDA Soil Texture Triangle

* Analyze the particle size of the different samples

Future Work

* Characterize chemical properties:

- Soil organic matter (SOM)
- Dissolved organic matter (DOM)
- Cation-exchange capacity (CEC)
- Residual pesticides

* Model lateral and vertical transport of ground water

Acknowledgments

Kristin Clark Dr. Arturo Keller Peng Wang

Samantha Freeman Dr. Nick Arnold Liu-Yen Kramer Luke Bawazer Dr. Evelyn Hu

Group B

http://maxweber.hunter.cuny.edu/pub/eres/EDSPC715_MCINTYRE/MonstersCartoon

Biotrenches and Bioswales

