

Nanostructured Metal Films

Condensed Matter Physics

Superconductivity: Variances in structural disorder enhance superconductivity in thin metal films.

Cosmology and Astrophysics

Near Infrared Photometry: Higher resolution infra red images for mapping the universe

<u>Chemistry</u>

Catalysis: Thin film's low mass and high surface area may be very useful for solid state catalysis

ughened Gold Surface

Biology Surface-Enhanced Raman Spectroscopy: Detect and identify individual molecules that bind to the film's surface.

Research Directive

Deposition parameters determine Morphology Morphology determines Properties

- Vary the deposition parameters
- Characterize the morphology
- Discover and Analyze the resulting properties
- Search for applications

.00001 Torr Argon Pressure

4 Torr Argon Pressure

Creator & Creations

High Vacuum created by Diffusion pump, backed by mechanical pump

Thin Films The Deposition Apparatus

Glass Bell Jar Substrate Table Crystal Detector Subtrate Holder and Sample

Path of Vapor

Clamps Connected to High Current Source

Boat filled with Copper

~5 Torr Deposition Simulation

220 Amps!

~5 Torr Deposition Simulation

Diffusion Limited Aggregation by khyar

Do you hear something?

Photoacoustic effect!

Gray Thin Film 1x

Black Thin Film 1x

Gray Thin Film 500x

Black Thin Film 500x

Gray Thin Film 5000x

Black Thin Film 5000x

Gray Thin Film 50000x

Black Thin Film 50000x

Resulting Properties

<u>Photoacoustic Response</u> Films broadcast sound in response to intensity <u>modulated</u> light

<u>Vitreous Thin Film</u> .000001 Torr Argon Pressure

No light absorption

No photoacoustic response

<u>Gray Thin Film</u> .1 Torr Argon Pressure

- Moderate light absorption
- Weak photoacoustic response

Black Thin Film 2.5 Torr Argon Pressure

- Very high light absorption
- Strong photoacoustic response

Summary Analysis

 Deposition parameters play a large role in determining structure

 Structure plays a large role in determining properties

 These novel properties may serve novel applications

Future Plans

 Photoacoustic effect: Measure the frequency range the films can broadcast

> High emissivity light sources: Determine the best geometry to allow for high emissivity thin films

Disorder enhanced superconductivity: Explore the role nanostructure plays in superconductivity

Nanostructured Thin Metal Films

Acknowledgements

Principal Investigator DAVID WELD Mentor

Associate Film Maker SHURA KOTLERMAN Lab Partner

Machine Shop Instructor GUY

National Science Foundation

Thank

You!

