Modifying the internal control circuitry of a Harvard Apparatus model 11 syringe pump

Edith Rodriguez Santa Barbara City College Electrical Engineering Mentor: Eric Terry Faculty Advisor: Joel Rothman/ Biology Department Faculty Advisor: Carl Meinhart /Mechanical Engineering Department National Institutes of Health (NIH) /Army Reserve

The Syringe pump in clinical and scientific environments

Clinical environments

Scientific environments

Syringe pump in scientific environments

Syringe pump

Microfluidic device

Syringe pumps are used to control the flow of fluids entering a microfluidic device

Using the expelling of fluid capability

Syringe holding water

Water pressure can cause the microfluidic device to break

Microfluidic device channels 250 um

Using the withdrawing of fluid capability

Modifying the Internal Control Circuitry

Internal Control Circuit

Motor

<u>Now</u> Motor rotates clockwise which allows for the expelling of water After Modifications Motor will rotate in both directions allowing for the expelling and withdrawing of water

Understanding existing system mechanically

Required to select the diameter of syringe and rate to expel fluid

Syringe pump

Two inputs to activate syringe pump

Understanding existing system electrically

Modifying the system

Old microcontroller and memory chip

LaunchPad

programming microcontroller

Write program for microcontroller to be able to spin motor in both direction

Ability to add NEW features!Computer control syringe pump

Dataset before modifications

Frequencies at different rates and constant diameter 1mm²

Our progress with the system

•Identified all components in circuit

Documented connections

Program in process

- Function calculates frequency
 based on diameter of the syringe and rate of flow
 Made changes to function generates
 signal at this frequency
 - faced problems with commands

Problem faced using signal generating function

function failed to generate signals between 125hz-240hz frequency range

Future work

Implement code that will start and stop program

Acknowledgements

Mentor: Eric Terry

Faculty Advisors: Joel Rothman and Carl Meinhart INSET program coordinators and Interns California NanoSystems Institute at UC Santa Barbara (CNSI)

National Science Foundation (NSF)