Lateral confinement of cylindrical domain thin polymer films

Victor Grande - Chemistry Ventura College Vindhya Mishra & Adetunji Onikoyi: Mentors Dr. Ed Kramer: Advisor UCSB Materials Research Laboratory NSF, IBM

		R

What is a polymer?

- Repeated structural units linked by covalent bonds
- Block copolymers
 - Two polymer chains linked by a covalent bond

Why study this system?

- Nanolithography: alternate method for creating masks with nanofeatures
- Current methods: photolithography, e-beam lithography
 - Can't create structures smaller than wavelength (λ) of light
 - Ultraviolet and X-rays possible, but still expensive
- Obtain even smaller features
- Nanowires
- Etch away the PVP to leave nanocylindrical holes behind
- Fill with metallic salt to make nanowires

What do we hope to accomplish?

- The block copolymer Poly (styrene-b-2-vinyl pyridine), or PS-PVP, self-assembles into a cylindrical array
 - 25% PVP : volume ratio
- Pattern is disordered
- We aim to improve translational and orientational order by graphoepitaxy
 - Using substrate to direct growth of overlying material

Experimental Method

- Film casting
- Annealing
- Imaging
 - Secondary Ion Mass Spectrometry (SIMS)
 - Atomic Force Microscopy (AFM)

Preparation of ordered films

- Dissolve polymer in toluene
 - 2% mass solution
- Spin coat on a silicon (Si) wafer at a specific rpm for 45 seconds
 - Thickness is inversely proportional to spin speed
 - We are targeting films of a specific thickness

Annealing

- Heat beyond the Order-Disorder Temperature (ODT)
 ODT for PS-PVP is ~ 220°C
- Cool down to the annealing temperature
 - Range of annealing temp. (AT) is ~150-200° C
 - We hold it at the AT for 2 days

Accessing the 'buried structure'

- Secondary Ion Mass Spectrometry (SIMS) to etch through PS film
 - Process exposes cylinders
- Analyze cylinder patterns using Atomic Force Microscopy (AFM)

Data collection

- We looked at two different kinds of films
 - Unconfined films
 - Polymer spun coat on a plain Si wafer
 - Confined films
 - Polymer spun coat on a patterned wafer

Disordered System (Plain Si wafer)

AFM Phase Scan

AFM Height Scan

Confined system (patterned wafer)

AFM Height Scan

AFM Phase Scan

Comparison of width

Width of channel ~ 1.36 μ m

Width of channel ~ 0.23 μm

Monolayer Defect Densities

Defects

- For monolayer, dislocation density is low but nonzero
- Disclination density is zero

Graphs courtesy of M. R. Hammond: *In-Plane Microdomain Order in Cylindrical Block Copolymer Thin Films,* 2005, Macromolecules

Summary

- Accomplishments
 - Learned about block copolymers
 - Improved translational and orientational order of cylinders
 - Learned how to operate AFM
 - Use existing methods to create smaller structures
 - Save \$\$\$\$\$

Future plans

- Quantification of defect density
- Compare the effects of channel walls to an unconstrained system
- Determine the effects of channel width and temperature
- Find the cause of defects

Acknowledgements

Vindhya Mishra Tunji Onikoyi The Kramer Group Mike Dimitriou Jens Kuhn Dr. Nick Arnold Special thanks to Dr. Evelyn Hu and Liu-Yen Kramer CNSI, NSF, IBM

Block Copolymers

A A A A A B B B B B B B

Approx. width of cylinder = 9.08 nm Approx. spacing = 11.3 nm

Monolayer

Top-down

- Start w/bulk and remove unwanted material
- Destructive procedure
- Bottom-up
 - Start from a scale smaller than desired feature size (e.g. molecular level to create nanofeatures)
 - Build up from that
 - Spontaneous building up = self-assembly
 - Thermodynamically favored