Microcontact Printing of Poly (L-lysine) Using PDMS Stamps for the Adhesion and Patterning of Neurons

Will Coburn Allan Hancock College Electrical Engineering

Lab Mentor: Sarah Grundeen Faculty Advisor: Dr. Luke Theogarajan Department of Electrical and Computer Engineering Funded by the National Institutes of Health

Neurological Disorders

The World Health Organization (WHO, 2007):

-One *billion* people suffer from some form of ND

-Europe spent *\$194 million* in 2004 alone on palliative care

-Effective care is largely unavailable to many suffering with NDs

-Billions of brain cells = neural network (1 neuron ~ 10 µm wide)

-Send and receive info via electrochemical signals

-Neurons comprise who we are.

Research goals for this summer include:

Create a novel, reproducible method of patterning healthy rat neurons onto glass substrates and multi electrode arrays (MEAs)

Incubate neurons and record neurite growth

Experimentation

Polydimethylsiloxane (PDMS) Stamp

15 µm

Experimental Problems

Pillar deformation when non-uniform or excessive force applied to stamp

Experimental Solutions

Young's Modulus (Pa) Stress (Pa) $E=rac{oldsymbol{\sigma}}{oldsymbol{\mathcal{E}}}$ Strain

Young's Modulus (PDMS) ~ 500 kPa

Young's Modulus (Glass) ~ 50 GPa

Glass is stiffer than PDMS.

Glass-backed stamp provides more even distribution of force, which may lead to less deformation.

Neuronal Plating

After PDMS stamping...

...stamped substrates were placed in wells and neurons were introduced with media.

2 ml of media mixed with 100,000 rat hippocampal neurons per well

Following Neurite Growth

25 µm pitch

35 µm pitch

-Large overgrowth areas

-PLL absent areas

-Non-uniform distribution of force causing stamp deformation

Unmodified PDMS Stamp 9 DIV, force of finger, 0.5 mg/ml PLL

Neurite Growth Cont...

25 µm pitch

-More defined pattern

-Less overgrowth

-"Patchy" neuronal growth

-Neuronal overgrowth still at some PLL spots

-Both indications of pillar deformation

Unmodified PDMS Stamp 12 DIV, 200 gram weight applied, 0.5 mg/ml PLL

"Window" Neurites

25 µm pitch

Perfect "window" pattern

-Still some overgrowth, may be due to not completely drying stamp

Glass-backed PDMS Stamp 9 DIV, 50 gram weight applied, 0.5 mg/ml PLL

Continuing the Research

Multielectrode Array recordings of extracellular electrical neurite activity

UC SANTA BARBARA engineering Using Atomic Force Microscopy for direct deposition of Poly (Llysine) to make process more reproducible and automated

Acknowledgements

Mentor: Sarah Grundeen Advisor: Dr. Luke Theogarajan

Special thanks to Maria Napoli, Jens Kuhn, Nick Arnold, Megan Valentine, and all contributors to INSET.

Dedicated to: Cynthia Martello (mom)

