Analysis of Fused Thiophene Polymer Field Effect Transistors (FET)

Yannick Rendu SBCC Chemical Engineering Mentor: Justin Cochran Faculty Advisor: Dr. Michael Chabinyc (Materials Department)

Polymer FET Importance

Low cost manufacturing Low energy fabrication Low environmental impact

Versatile processing

Flexible substrates

Field Effect Transistor (FET)

- 1. Transistors are logic switches
- 2. Controlled by a gate voltage

PolyFETs and Doping

In off state

current still flows (always On!)

Goals

Define ideal operating parameters for viable commercial devices.

Experimental Methods

Experimental Methods

Research Data – Dopant Effects

Research Data – Dopant Effects

Research Data – Bias Meas.

Research Data – V_T Results

Conclusions

- O₂ and N₂ device results comparable
- Minimal hysteresis for pulsed operation
- V_T shift is V_G dependent normal
- Quick recovery under bias testing
- No permanent damage under bias testing

On-going research:

- Finish bias testing conditions
 •O₂ and H₂O
- Look at different dielectrics
 - polystyrene, poly(methyl methacrylate)

Acknowledgments

- INSET (and the NSF) for the opportunity
- Corning for the funding and material
- SBCC and UCSB without whom this would not be possible
- My mentor Justin Cochran for answering too many questions
- Professor Michael Chabinyc for the lab
- Maw and Paw for making all this possible

Experimental Methods

