Cellular Libraries of Peptide Substrates (CLiPS)

INSET Intern: Yu-An Chen Santa Barbara City College

Major: Biochemistry

Faculty Advisor: Professor Patrick S. Daugherty

Mentor: Kevin T. Boulware

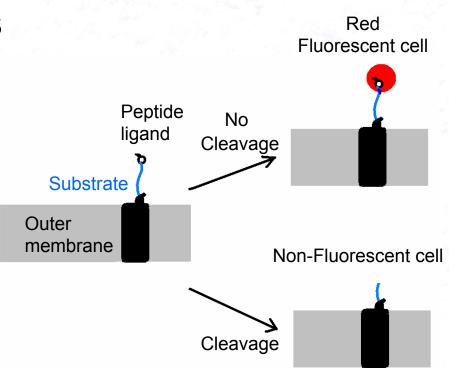
Funded by: National Science Foundation (NSF),

Centers of Cancer Nanotechnology Excellence

(CCNEs)

Important Roles of Proteases

- Proteases are enzymes that cleave proteins.
- Proteases help cancer cells to transfer from one place to another, and inhibiting proteases might prevent cancer cells from spreading out.

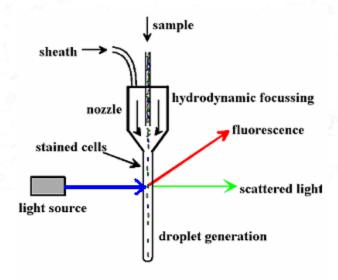

Example: Matrix metalloprotease-1 (MMP-1) degrades collagens which is part of extra cellular matrix (ECM). This degradation of ECM allows cell growth.

Research Goal:

Determine the optimum peptide sequences that protease can cleave.

Cellular Libraries of Peptide Substrates (CLiPS)

- Experimental Method: CLiPS
- Substrates are labeled with red fluorescent probe and peptide ligand bind to probe
- Red fluorescent cells are treated with protease
- Red fl. cell No cleavage
 Non-fl. Cell Cleavage
- Utilize Fluorescence Activated Cell Sorter (FACS) to detect substrate cleavage

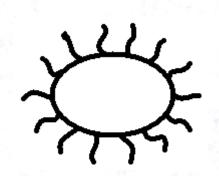

What I do in the laboratory – Optimize Method

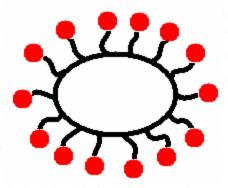
- Culture
- Subculture control cell growth rate
- Induction produce substrates
- Reaction incubate cells with protease
- Label label cells with red fluorescent probe
- Wash remove unbound fluorescent probe from cells
- Run samples on FACS

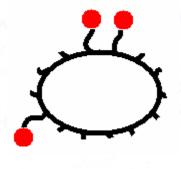
An extra step towards better results that we found:

- Remove growth media from cells completely

Fluorescence Activated Cell Sorter (FACS) BD FACSAria TM cell sorter – Flow Cytometer

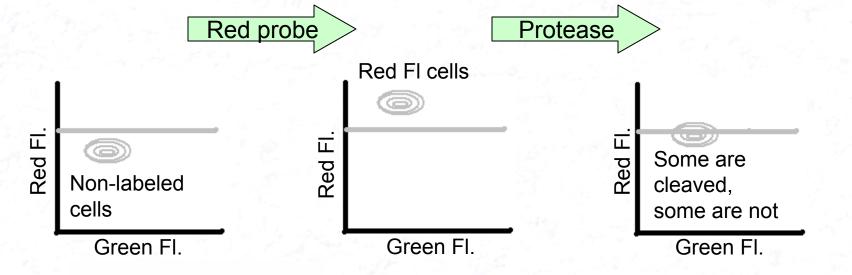

Fluidics System in FACS


- Sheath center the sample stream to obtain an individual cell flows.
- As each individual cell flows through blue laser, lights are emitted from excited cell.



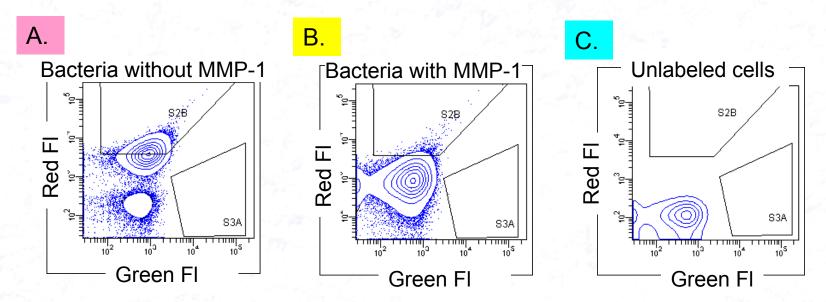
FACS

Expected Cell Population Analysis



Auto-fluorescence of cell

Uncleaved, labeled cell


Cleaved, labeled cell

Key: ~ Substrate

Red fluorescent probe

Results

Calculation of Conversion:

(Without MMP-1 cell mean A. – With MMP-1 cell mean B.) / (Without MMP-1 cell mean A. – auto-fluorescence of cells C.)

E.g. (3535 - 1065)/(3535 - 200) = 0.741

0.741 represents the average of 74.1% of the cell population cleave

Key: Each dot stands for one cell.

Peptide Sequences of MMP-1 Substrates

Cleave

Substrate	Sequence	,	Conversion%	Std Dev
	P4 P3 P2 P1	P1'P2'	- Table 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
G1	– <mark>P V </mark> A	M R	97	0.78
G2	– <mark>P V</mark> N	VV	96	4.77
F6	V P M V	V –	95	1.92
F2	T <mark>P L </mark> A	L - / //	94	0.95
D2	V <mark>P V</mark> N	<u> </u>	93	19.78
D4	M P L V	<u> </u>	93	3.39
Н5	V P L N	<u> </u>	93	6.15
E3	– <mark>P V</mark> P	M V	88	2.66
A1	– <mark>P M</mark> A	V T	79	23.60
В2	V PVV	<u>M</u> –	78	5.62
E6	– <mark>P M</mark> A	VI	75	10.94
D5	M P V V	L –	70	3.39
	Was Land	7.00		

Consensus

Amino acid Abbreviation

L - Leucine

M - Methionine

P - Proline

V - Valine

Summary

- A new method of studying proteases CLiPS
- Remove all the growth media off cells before labeling
- Run samples on FACS and analyze FACS data
- The optimum peptide sequence of MMP-1

Future Plan

 The high conversion samples we found this summer will be studied further

Acknowledgement

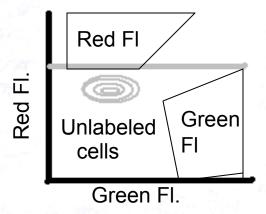
- Faculty Advisor: Professor Patrick S. Daugherty
- Mentor: Kevin T. Boulware
- The other intern: David Lee
- People who made this happen: Samantha Freeman, Nick Arnold,

Liu-Yen Kramer, Andrew Morrill.

Funding Sources:

- National Science Foundation (NSF)
- Centers of Cancer Nanotechnology Excellence (CCNEs)

Laboratory Group Members:


Group members are:(L-R) Professor Patrick Daugherty, Jerry Thomas, Claudia Gottstein, Annalee Nguyen, Laura-Marie Nucho, Karen Dane, Xia You, Marco Mena, Sejal Hall, Kevin Boulware, Sophia Kenrick, Yimin Zhu, and Jeffrey Rice.

Not pictured: Paul Bessette, Abeer Jabaiah.

Amino Acids Abbreviation

- Abbreviation Amino acid name
- Ala A Alanine
- Arg R Arginine
- Asn N Asparagine
- Asp D Aspartic acid (Aspartate)
- Cys C Cysteine
- Gln Q Glutamine
- Glu E Glutamic acid (Glutamate)
- Gly G Glycine
- His H Histidine
- Ile I Isoleucine
- Leu L Leucine
- Lys K Lysine
- Met M Methionine
- Phe F Phenylalanine
- Pro P Proline
- Ser S Serine
- Thr T Threonine
- Trp W Tryptophan
- Tyr Y Tyrosine
- Val V Valine

Plot

