ORAL DELIVERY OF MACRONOLECULES

ZAUREEN KAPADIA BIOLOGY MAJOR DE ANZA COLLEGE

MENTOR: KATIE WHITEHEAD

FACULTY ADVISOR: SAMIR MITRAGOTRI

FUNDED BY:
AMERICAN DIABETES ASSOCIATION
UC BIOTECHNOLOGY RESEARCH AND
EDUCATION PROGRAM

MOTIVATION

- □ Oral delivery is one of the most sought after means of drug administration
- 1. Its convenience
- 2. High patient compliance
- However it is difficult to administer drugs that are proteins and other macromolecules

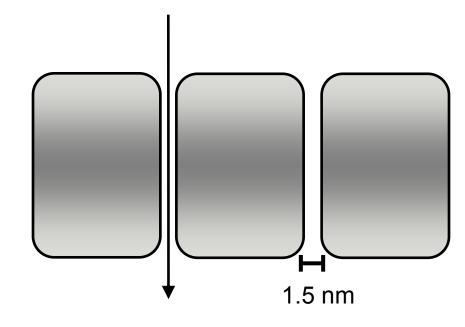
- 1. Enzyme degradation
- 2. Low permeability

PERMEATION ENHANCER

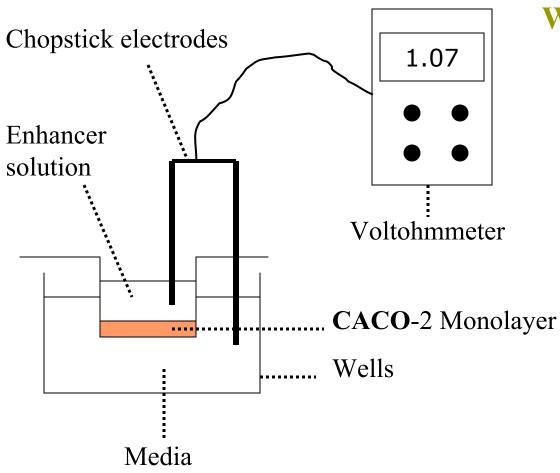
- An enhancer is a molecule that increases the permeability of intestinal membrane
- □ Single permeation enhancers have limited use

My Goal:

To find synergistic combinations of chemical enhancers


Enhancement potential

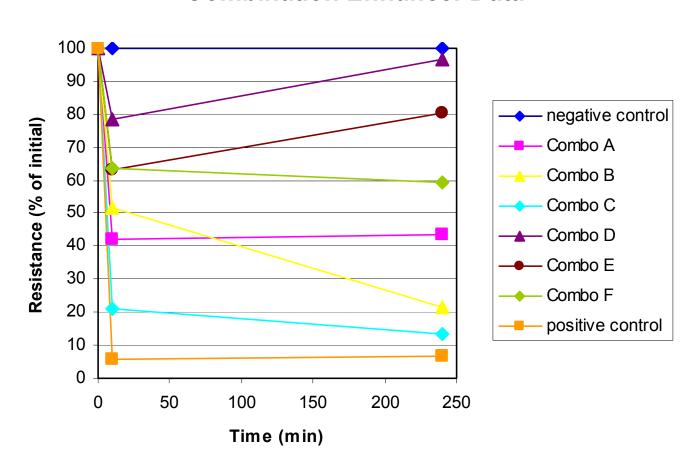
EXPERIMNETAL PROCEDURE


- Growing and maintaining CACO-2 cells (intestinal cells)
- 16 different enhancers from 9 distinct chemical categories
- Exposing cells to the enhancers and then measuring resistance of the cell membrane

Enhancers alter the structure of tight junctions

TIGHT JUNCTION

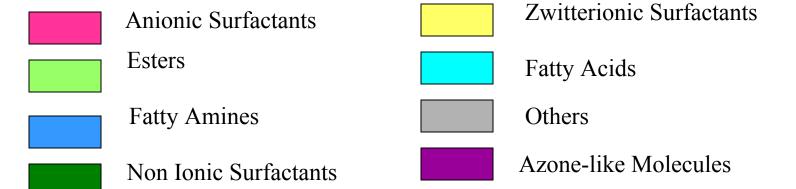
THE VOLTOHMMETER



What does it measure?

- It measures the resistance of the Caco-2 Monolayer
- The smaller the resistance, the greater the permeability of the cell membrane

ENHANCEMENT RESULTS


Combination Enhancer Data

ENHANCEMENT AND SYNERGY RESULTS

Combinations		Average
		Enhancement
SLA	MIE	0.938
SLA	UR	0.935
SLA	TX100	0.934

Combinations		Synergy
DPS	HPA	2.39
UR	EDTA	2.25
HPA	MP	2.09

CONCLUSION

- Synergistic combinations of permeation enhancers do exist
 - Interactions between enhancers produce synergy

- Our best enhancers for
 - Potency: SLA and MIE
 - Synergy: DPS and HPA
- Zwitterionic surfactants and fatty esters are more likely to produce synergistic combinations

WHAT'S NEXT?

- Expanding the combination study
 - Testing more combinations from the ideal categories of enhancers

- Performing Safety Analysis of the synergistic combinations
 - Maybe look for synergistic combinations in toxicity

ACKNOWLEDGEMENTS

- My mentor, Katie Whitehead
- □ The Mitragotri Group
- Faculty advisor, Dr. Samir Mitragotri
- □ INSET, UCSB and Samantha Freeman
- Funding Agency :
 - AMERICAN DIABETES ASSOCIATION
 - UC BIOTECHNOLOGY RESEARCH AND EDUCATION PROGRAM
 - NATIONAL SCIENCE FOUNDATION

QUESTIONS?

COMBINATIONS

Combinations		
A	0.05% UR	0.05% EDTA
В	0.05% UR	0.05% CN
С	0.05% UR	0.05% PPZ
D	0.05% UR	0.05% PO
Е	0.05% UR	0.05% MPZ
F	0.05% UR	0.05% Men

EQUATIONS....

ENHANCEMENT POTENTIAL =

$$\begin{array}{rcl}
\text{SYNERGY} &=& \text{EP}_{X+Y} \\
& & \\
& & \\
0.5 \text{ EP}_{X} + 0.5 \text{ EP}_{Y}
\end{array}$$